The Evolution and Interaction of Normal Faults in Multi-Phase Rifting: A Numerical Modelling Approach
Abstract
Continental rifts commonly undergo multiple phases of rifting, with variations in both the rate and orientation of extension through time. Physical analogue experiments have demonstrated that the
fault
network developed during the initial rift phase influences subsequent
fault
populations. However, the full 3D geometry, evolution and interaction of
fault
networks are difficult to constrain from such models. A 3D discrete element model is employed to compare the evolution of normal
fault
networks in multi-phase rift environments with networks developed during a single rift phase. Faults are defined as an accumulation of broken bonds in the brittle layer, and their location, throw and interaction are recorded through time. Thus incremental
fault
displacement and geometry and the 4D evolution of the
fault
network can be examined. We investigate how the maturity of an initial normal
fault
network impacts
fault
network evolution and geometry during a second rift phase. We examine how strongly the presence of Phase I structures controls the initiation and localization of subsequent structures by setting secondary extension directions at 30, 45 and 60 degrees to the initial phase, and varying the length of Phase I relative to Phase II. Extension in the initial rift phase results in conjugate
fault
sets that nucleate and organize themselves by segment growth, interaction and linkage into co-linear
fault
zones. Increased extension leads to a preferred dip polarity and crustal-scale half grabens. The degree of development of this first-phase
fault
network strongly influences the second phase
fault
geometry and evolution. A small amount of Phase I extension promotes
fault
orientations in Phase II that are initially controlled by the orientation of Phase I before Phase II dominates. An intermediate level of Phase I extension results in complex Phase II
fault
geometries where reactivation of Phase I faults is common and new faults form to accommodate displacement on earlier faults. Sigmoidal planform
fault
geometries develop, with complex, zig-zag and rhomboidal
fault
patterns. A mature initial
fault
network results in Phase II being dominated by, and deformation localized onto, Phase I faults. Domains dominated by new Phase II faults occur where the density of Phase I faults is low. In all models,
fault
geometry shows clear variation with depth - faults become less segmented and are better represented by the Phase I orientation at deeper structural levels.
AAPG Datapages/Search and Discovery Article #90216 ©2015 AAPG Annual Convention and Exhibition, Denver, CO., May 31 - June 3, 2015