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Fresnel interference and inhomogeneity scattering are two fundamental processes that affect 
finite-frequency wave propagation in inhomogeneous media. Neglecting the effects of these 
processes in its formulation, asymptotic ray theory (ART) is essentially an infinite-frequency ray 
method. It becomes singular near caustics and fails to model a host of finite-frequency wave 
phenomena important for accurate seismic modeling and imaging.  Several finite-frequency ray 
methods have been developed to overcome the limitations of ART, and they can be divided into 
two distinct groups: the ray summation methods and the phase-ray method. The ray-summation 
methods such as the Maslov and Gaussian-beam methods can model the wave phenomena 
arising from Fresnel interference, but remain unable to account for inhomogeneity scattering. The 
phase-ray method, on the other hand, can model scattering-related wave phenomena, but ignores 
the contributions from neighboring non-geometric rays. Thus, both ray-summation and phase-ray 
methods are only partially successful in modeling finite-frequency wave propagation in 
inhomogeneous media. I describe in this study a ray method which combines the advantages of 
both ray-summation and phase-ray methods. By expanding a wavefield into a Maslov summation 
of phase-ray solutions, the new method can now model the finite-frequency wave phenomena 
arising from both inhomogeneity scattering and Fresnel interference, and has no singularity 
problem. It is thus a complete finite-frequency ray method that provides a powerful tool for 
accurate seismic modeling and imaging in general inhomogeneous media.

Introduction
Asymptotic ray theory (ART) plays an important role in seismic modeling and imaging. It is, for 
example, a key element of the Kirchhoff migration algorithm which has been a major tool over the 
past decade for prestack depth imaging. ART has the advantage of simplicity in that a single ray is 
used to determine the traveltime and amplitude of a particular arrival. In assuming that wave 
energy propagates along a single ray connecting the source and receiver, however, ART neglects 
the contributions from both Fresnel interference and inhomogeneity scattering, two fundamental 
processes that affect finite-frequency wave propagation in inhomogeneous media. Thus, ART is 
essentially an infinite-frequency ray method (Zhu and Chun, 1994). It becomes singular near 
caustics and fails to model a host of finite-frequency wave phenomena such as diffractions and 
frequency-dependent subsurface illumination. 

A number of finite-frequency ray methods have been developed to overcome the limitations of 
ART in modeling Fresnel interference and inhomogeneity scattering. These methods can be 
divided into two distinct groups: the ray summation methods and the phase-ray method.  By 
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expanding a wavefield as a summation of ART solutions, the ray-summation methods such as 
Maslov and Gaussian-beam methods can model the finite-frequency wave phenomena arising 
from Fresnel interference between neighboring rays (Chapman and Drummond, 1982; Cerveny et 
al., 1982), but remain unable to account for the inhomogeneity scattering effects. Based on a 
phase eikonal equation, on the other hand, the phase-ray method is capable of modeling 
scattering-related wave phenomena (Zhu and Chun, 1994), but ignores the contribution from 
neighboring non-geometric rays. Thus, both ray summation and phase-ray methods are only 
partially successful in modeling finite-frequency wave propagation in general inhomogeneous 
media.  The purpose of this study is to combine the phase-ray method with Maslov summation 
theory to formulate a complete finite-frequency method that can model both Fresnel interference 
and inhomogeneity scattering. In the following sections, I first summarize the ART and ART-based 
Maslov summation methods and then describe their generalization to phase-ray and phase-ray-
based Maslov methods. 

ART and ART-Based Maslov Summation 
ART and Maslov theory have been described in detail, for example, by Chapman and Drummond 
(1982). I summarize here only the results that are to be generalized in the next section.

ART solution Consider the wave equation in the frequency domain: 
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ART seeks an approximate solution to the wave equation in the form of ray series: 
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where )(nA  is the amplitude of the nth-order term of the series, and )(x� the traveltime along the 
ray.   Substituting the solution into the wave equation and retaining only the zero-order terms in 
the resulting expansion yields the classic eikonal equation  
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and the amplitude equation

)(
)(

)(
)(

)(
0

0
)0(

)0(

x
x

x
xx

V
V

E
AA � , (4) 

where x0 is the source point. The geometric spreading function E in equation 4 is determined by
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where J(x) is the Jacobian associated with the transformation between the Cartesian and ray 
coordinates. The zero-order ART solution given in equations 2, 3, and 4 thus becomes 
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where KMAH index �  takes into account the accumulated phase shift due to the sign changes in 
E(x) along the ray (Chapman and Drummond, 1982). 

ART-based Maslov summation ART solution 6 assumes that wavefield at receiver point x is 
determined by the wavefront information along a single geometric ray connecting the source to 
this receiver point.  This is exact only for infinite frequency because, for finite frequency, the 
wavefield at x is the interfering result of a bundle of rays arriving within the Fresnel region around 
x. Neglecting the contributions of these neighboring rays can result in significant inaccuracy when 
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the wavefront around x is not sufficiently smooth. To take into account of this wave interfering 
process, Maslov method represents the wavefield at x as a summation of neighboring ART rays 
(Chapman and Drummond, 1982): 
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where 11 / xp ��� �  is the horizontal component of the slowness vector ���p . The Maslov 
amplitude ),,( 321 xxpB and Maslov phase ),( 1 xp�  for each ray arrival in summation 7 can be 
calculated from the ART amplitude and traveltime given, respectively, in equations 4 and 3 (e.g., 
Chapman and Drummond, 1982).

Phase Ray and Phase-Ray-Based Maslov Summation 
Although the ART-based Maslov summation method takes into account the contribution of 
neighboring rays and is more accurate than ART in modeling finite-frequency wavefield, it is still 
unable to model wave phenomena related to inhomogeneity scattering. That both ART and the 
ray summation methods fail to address the scattering-related phenomena is not a coincidence. All 
these methods inherit, from the classic eikonal equation 3, a simplifying assumption, namely, 
signals of all frequencies propagate at a single speed and along a single ray path. This amounts 
to neglecting the scattering effects due to medium inhomogeneities as these effects in general 
induce dispersion and frequency-dependent propagation paths. 

Phase-ray solution To remove the simplifying assumption underlying ART and ART-based ray 
summation methods, the phase–ray method seeks a ray solution to wave equation 1 in the form of 

),(),(),( ����� xxx ieA�� . (8) 
The ray solution 8 is more general than that in 2 because its amplitude ),( �xA  and 
traveltime ),( �� x are functions of frequency. Substituting 8 into wave equation 1 and equating the 
real and imaginary part leads to the phase eikonal equation (Zhu, 1988) 
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and the amplitude equation
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where ),(/1),( ��� xx ��v  is the phase velocity, and the expression for determining ),( �xE  is 
identical to that in equation 5, except that the Jacobians are now frequency-dependent. The 
divergence coefficient �  in equation 9 is given by

),(
),(

),(
1),(

0 �
�

�
��

x
x

x
x

v
v

E
� . (11) 

The phase eikonal equation 9 differs from the classic eikonal equation 3 in that it includes on its 
right-hand side a frequency-dependent second term. It can be shown using the Born 
approximation that this term embodies the scattering effects due to velocity gradients and 
geometric focusing (Zhu, 1988). Retaining this scattering term removes the simplifying 
assumption of the previous ray methods that signals at all frequencies propagate at a single 
speed and along a single ray path. In other words, it now allows signals at different frequencies to 
propagate at different phase velocities and along different ray paths. The phase-ray method thus 
provides a simple and elegant approach for modeling wave scattering in inhomogeneous media. 
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The scattering term also introduces signal smoothing and results in a natural removal of the 
singularity of ART near a caustic (Zhu and Chun, 1994). It is clear from equation 9 that 
inhomogeneity scattering is a finite-frequency phenomenon. Only at infinite frequency, does the 
scattering term vanish from equation 9, the classic eikonal equation becomes exact, and the ray 
bundle connecting a source-receiver pair deflates into a single ray.

The derivation leading to the phase-ray solution given in equations 8, 9 and 10 has been 
accomplished assuming no approximation. The solution thus represents an exact ray formulation. 
Except for a few velocity functions, however, exact solutions to the eikonal equation 9 are in 
general unattainable. Zhu (1988) has shown that equation 9 can be solved by asymptotic 
expansion, and for the far field, its second-order approximation takes the form 
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where slowness P = 1/V.  The phase-ray solution given in equations 8, 10, and 12 has an 
estimated accuracy of )( 2��O , two orders of magnitude more accurate than that of )( 0�O for ART 
and ART-based ray summation methods. It has been successfully used to model a number of 
scattering-induced wave phenomena such as partial reflections from a gradient zone (Zhu and 
Chun, 1994).

Phase-ray-based Maslov summation Although more accurate than ART and ART-based ray 
summation methods, the phase-ray solution cannot adequately model wave phenomena arising 
from Fresnel interference. At a given frequency, the phase-ray solution is evaluated along a single 
ray in the same manner as the ART solution except that its eikonal is determined by phase 
velocity ),( �xv  instead of medium velocity )(xV . Thus, similar to ART, the phase-ray method 
ignores the contributions from the neighboring rays at the given frequency, and can result in 
significant inaccuracy when the wavefront at that frequency is not sufficiently smooth around the 
receiver point x. This limitation can be overcome by expanding a wavefield at each frequency as a 
summation of neighboring phase rays. This can be accomplished in the same manner as that 
described in the previous section. The only difference is that the summation must now be carried 
out at each frequency on a different wavefront, rather than on a single wavefront for all 
frequencies as for the ART-based Maslov summation. This leads to the phase-ray Maslov 
summation solution: 
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Similar to the ART-based Maslov summation method, the amplitude ),( �yB  and phase function 
),,( 1 �� xp  in equation 13 can be calculated from the phase-ray amplitude 10 and traveltime 12 

with the formula given by Chapman and Drummond (1982). The phase-ray Maslov summation 
solution in 13 can now model both Fresnel interference and inhomogeneity scattering, and is valid 
at caustics. It thus provides a powerful tool for accurate modeling finite-frequency wave 
propagation in general inhomogeneous media. 
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Conclusions 
ART is essentially an infinite-frequency ray method. It becomes singular and fails to model the 
finite-frequency wave   phenomena arising from both Fresnel interference and inhomogeneity 
scattering. To overcome the limitations of ART, I have formulated in this study a new ray method 
by combining the advantages of the ray-summation and phase-ray methods. By expanding a 
wavefield as a Maslov summation of phase-ray solutions, the newly formulated phase-ray Maslov 
summation method can now model both Fresnel interference and inhomogeneity scattering, and 
has no singularity problem.  It is thus a complete finite-frequency ray method and provides a 
powerful tool for accurate seismic modeling and imaging in general inhomogeneous media 
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