
Phase Unwrapping: A Review of Methods and a Novel Technique 

Sam T. Kaplan* 
University of Alberta, Edmonton, AB, Canada 

skaplan@ualberta.ca 

and

Tadeusz J. Ulrych 
University of British Columbia, Vancouver, BC, Canada 

Computation of the complex cepstrum uses the logarithm, and in complex analysis the logarithm 
is multi-valued.  To compensate, the phase of the complex variable that the logarithm operates on 
must be unwrapped. Phase unwrapping algorithms do exactly this, effectively turning the multi-
valued logarithm into a well-behaved analytic function that is suitable for further manipulation.  
There are an abundance of phase unwrapping algorithms in the literature that either act on the 
phase itself, or on the complex, frequency domain signal from which the phase is derived.  We 
introduce a further phase unwrapping algorithm that operates in the range of the z  transform 
(often referred to as the w plane).  In this domain, the branch-cut that is associated with wrapped 
phase is easily identified, and is used in our w  plane phase unwrapping algorithm. 

Introduction
In the 1970's and 1980's there was a great deal of interest in the complex cepstrum.  The theory 
operates on amplitude and phase, thereby requiring them to behave analytically. While the 
amplitude is inherently analytic, the phase is not and must be unwrapped.  More recently, Karam 
(2006) provided a thorough review of phase unwrapping methods, and introduced a hybrid 
technique using a combination of established algorithms. Meanwhile, Treitel et al. (2006) review 
the method of polynomial factorization (originally attributed to Steiglitz and Dickinson (1977,1982)) 
for the purpose of phase unwrapping. This renewed interest spurred our own investigations 
ultimately resulting in a novel technique. 

We call the new technique w  plane phase unwrapping.  In many ways, it is simply a recasting of 
known solutions in a new domain, and unlike the root factoring method of Steiglitz and Dickinson 
(1977,1982), it does not (without appropriate use of interpolation) guarantee a correct solution.  
Moreover, it shares the spirit of algorithms published in McGowan and Kuc (1982) and Al-Nashi 
(1989) that use all information given by the z  transform, rather than only its phase component.  
We begin with some motivation using the complex cepstrum.  Then, we make a selective review 
of previous methods.  Finally, we give a description of w  plane phase unwrapping.  During our 
exposition, we try to emphasize the potential problems (however obscure) that these algorithms 
must deal with, which in turn present potential reasons for failure. 
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Complex Cepstrum and Multi-Valued Functions 
We concern ourselves with a transform that maps a signal from the time domain to the complex 
cepstrum where the signal is filtered before performing the inverse transform. This is a familiar 
strategy in signal and image processing.  The difficulty lies in the fact that the transform, in part,
uses the logarithm of a complex number.  In complex analysis the logarithm is, due to the phase 
of a complex number, a multi-valued function.  Here, we review the transform of the complex 
cepstrum, and analyze the mathematical domains ( z  plane and w  plane) that are involved in the 
computations.  It is in the w  plane where the logarithm is applied, and where phase unwrapping is 
used to make it single-valued and, in turn, analytic. 

The complex cepstrum of a discrete signal, �h(ti) , i �1�N  , is computed in the following steps: (1) 
compute the z  transform of h , giving w(z) ; (2) compute the logarithm of w(z) , giving logw(z); (3) 
compute the inverse z  transform of logw(z) to find the complex cepstrum. 

First, the z  transform of h  is 

��w(z) � h(t0) � h(t1)z � h(t2)z
2 ��� h(tN )zN (1)

where we say that z � x � iy  is the z  plane, and that w(z) � u(z) � iv(z)  is the w  plane.  We 
evaluate the polynomial in equation (1) for the unit circle in the z  plane.  That is, for z �1 and 
arg(z)� (��,� ].  Second, we take the logarithm of the polynomial w(z)  so that 

��logw(z) � Log w(z) � Arg(w(z)) � i2�n , n � 0,�1,�2,� . (2)

Third, we compute the inverse z  transform of equation (2), ĥ � w�1(log(w(z))), where ĥ  is the 
complex cepstrum.  For an application of the complex cepstrum in geophysics, please see Ulrych 
(1971).

From equation (2), it is evident that the logarithm is multi-valued. Arg(w(z))  is the principal 
argument of w(z) , and is in practice computed using the arctangent function so that 
Arg(w(z))� (��,� ].  This choice of principal argument means that the branch-cut in the w  plane is 
the non-positive real axis.  It is this branch-cut that manifests as 2�  discontinuities in phase, and 
various unwrapping methods remove its effect, allowing us to work with the logarithm as if it were 
analytic.

Selective Review of Phase Unwrapping Algorithms 
Our introduction alludes to a variety of algorithms for phase unwrapping.  Arguably, the simplest of 
these make use of the expected continuity in the analytic phase (Oppenheim and Schafer, 1989; 
Tribolet, 1977). More involved algorithms use the roots of the z  transform polynomial (equation 
(1)); either the complex roots (Steiglitz and Dickenson, 1982), or the roots of the real component 
of w(z)  (McGowan and Kuc, 1982).  Separately, Al-Nashi (1989) identifies and incorporates sharp 
zeros into his phase unwrapping algorithm. 

The oft referenced algorithm of Tribolet (1977) uses the fundamental theorem of integral calculus 
to identify and remove discontinuities caused by the w  plane branch-cut.  This involves a 
numerical integration, and Tribolet (1977) ensures its validity through comparison, plus or minus 
integer multiples of 2� , to the principal argument .  In essence, the Tribolet (1977) algorithm is 
similar to Oppenheim and Schafer (1989).  Both use the phase of w(z)  to search for 
discontinuities created by the branch-cut in the w plane; but, the Tribolet (1977) method 
recognizes when w(z) requires further interpolation. 
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Next, we consider the algorithms of McGowan and Kuc  (1982) and Steiglitz and Dickinson (1982) 
that use the roots of w(z)  for phase unwrapping.  In McGowan and Kuc, the roots of u(z) (the real 
component of w(z)) are used.  As usual, the wrapped phase is computed using the inverse 
tangent function, arg(w(z)) � a tan(v(x,y) /u(x,y)), and �  is either added or subtracted as z  passes 
through singularities of v(x,y) /u(x,y).  Thus the method must find the roots of u(x,y) .  Conversely, 
Steiglitz and Dickenson (1982) factorize w(z)  so that each factor has analytic phase; their sum is 
the total phase, and is also analytic.  That is, a sum of analytic functions is, itself, analytic.  It is 
easy to argue that this represents the best possible algorithm for phase unwrapping in that it 
provides a guaranteed result.  The downside is its need to factorize potentially large polynomials; 
from a practical point of view, not all time series need be factorizable.  That said, there exist very 
fast algorithms for factoring one dimensional polynomials (e.g. Sitton et al., 2003). 

Al-Nashi (1989) recognized that in addition to 2�  discontinuities caused by the w  plane branch-
cut, there may also be �  discontinuities generated by the presence of, so called, sharp zeros in 
the z  plane.  Sharp zeros are roots of w(z)  that fall close to the unit circle.  The improbable zero 
that falls on the unit circle causes a �  discontinuity.  Algorithms that rely on the continuity of 
phase may mistakenly attribute the effects of sharp zeros to the w  plane branch-cut; or 
alternatively, they may miss the effect of the branch-cut where Arg(w(z))  is obscured by sharp 
zeros.  To avoid this miss-classification, Al-Nashi (1989) designed an algorithm that incorporates 
the locations of sharp zeros. 

The overview of methods presented here is not complete.  Moreover, some of the details of each 
algorithm are left to the cited papers, and we encourage the interested reader to pursue these. 

W Plane Phase Unwrapping 
Here, we introduce a novel algorithm for phase unwrapping, called w plane phase unwrapping.  It 
adds an algorithm to a problem with many existing solutions; none-the-less, we hope that it 
provides further insight, and is pleasing for its simplicity and straight forward extension to higher 
dimensions.  The logic of the algorithm is short.  When the contour of the filter in the w  plane 
crosses the branch-cut, we adjust n  in equation (2). Unlike the polynomial factorization algorithm 
of Steiglitz and Dickenson (1982), w  plane phase unwrapping may require studious interpolation 
to guarantee a correct answer. 

To proceed, we define � � arg(z), and use �  to parameterize the filter's w  plane contour so that 

w(z) � (u(z) � iv(z)) � w(�) � (u(�) � iv(�)) , z � ei� , � � (��,� ].
In practice, �  takes on a finite and ordered set of values, �� � {�0,�1,�,�N } where �0 � �� � 	,
	 
 0 and �N � � .  The algorithm proceeds by comparing w(�)  for successive instances of � .  In 
particular, let n0 � 0, and if (1) u(� i�1) � 0, u(� i) � 0  and v(� i�1)v(� i) � 0 , then let 
ni � ni�1 � sign(v(� i�1)). The unwrapped phase is arg(w(� i)) � Arg(w(� i)) � i2�ni . If v(� i�1)v(� i) � 0 ;
but, if either (2) u(� i�1) � 0 and u(� i) 
 0 , or (3) u(� i�1) 
 0 and u(� i) � 0  apply, then the result is 
ambiguous.  In these two ambiguous cases, (2) and (3), it is not certain if the contour crosses the 
real axis v � 0 to the left or right of the imaginary axis u � 0.  We note that the ambiguous case in 
(2) and (3) correspond to filters with sharp zeros in the z  plane.  In the cases of (2) or (3), then 
like Tribolet (1977), w(z)  must be interpolated to remove the ambiguity, and return us to the 
unambiguous condition (1). 

In Figure 1, we show the application of the algorithm to a short filter where it is easy to illustrate 
each crossing of the branch cut.  Figure 1a shows the roots of w(z)  in the z  plane.  Figure 1b 
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shows the corresponding contour w(z)  in the w plane where we identify the crossings of the 
branch-cut.  Figure 1c and 1d show the phase before and after application of w  plane phase 
unwrapping.

We have implemented the straight forward extension of w  plane phase unwrapping to 2D.  We 
omit details and examples for the sake of brevity.  

Figure 1. Example of w  plane phase unwrapping.  In (a), we plot the roots of the filter in the z  plane.  (b) The same 
filter in the w plane.  (c) The wrapped phase, and (d)  the unwrapped phase. 

Discussion 
We introduce w  plane phase unwrapping. While we do not presume to recommend its use in 
place of existing algorithms, we believe it to be a novel approach.  Our algorithm operates in the 
w  plane.  In this domain, the 2�  jumps that phase unwrapping algorithms are tasked with 
removing are naturally identified with the branch-cut.  Indeed, all phase unwrapping algorithms 
must account for this branch-cut, and here we do so in what we consider to be the most 
appropriate domain. 
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