The CO2 Sealing Efficiency of Caprocks
Andreas Busch1, Sascha Alles1, David Dewhurst2, and Bernhard M. Krooss1
1Institute of Geology and Geochemistry of Petroleum and Coal, Lochnerstr. 4-20, RWTH Aachen University, 52056 Aachen, Germany
2CSIRO Petroleum, Australian Resources Research Centre, Australia
Shale lithotypes of various compositions occur abundantly in sedimentary basins and act as natural seals for petroleum and natural gas reservoirs over extended geologic periods. Based on to their mechanical, petrophysical and chemical/mineralogical properties, shales are becoming increasingly of interest in the context of long-term isolation of anthropogenic (e.g. radioactive) waste and subsurface storage of fluids. The efficiency and long-term integrity of seal formations (caprocks) is also one of the central issues for CO2 storage in saline aquifers, depleted oil and gas reservoirs and coals. Due to its chemical reactivity and physico-chemical properties,
CO2
is expected to differ substantially from other natural gas components in terms of transport behaviour and interaction with the mineral/water system.
carbon
content. In further experimental studies it was shown that the sorptive CO2storage potential of clay minerals (montmorillonite, kaolinite, etc.) can be significantly high. Comparison of x-ray diffraction patterns of post-experiment samples and original samples did not reveal any detectable mineralogical differences.These findings may provide a new view on the issue of caprock integrity. In addition to their sealing properties, natural shale sequences could represent a significant sink for
carbon
dioxide
deposited in the subsurface by fixing and immobilising it and hence reduce the risk of leakage to the surface.
AAPG Search and Discover Article #90066©2007 AAPG Hedberg Conference, The Hague, The Netherlands
AAPG Search and Discover Article #90066©2007 AAPG Hedberg Conference, The Hague, The Netherlands