Datapages, Inc.Print this page

Abstract: Effect of In Situ Stress and Production-Induced Changes in Stress on Permeability of Naturally Fractured Reservoirs

Lawrence Teufel, John Lorenz

Fractures are present in almost all hydrocarbon reservoirs, but it is only when fractures form an interconnected network that their effect on fluid flow becomes important. Fractures not only enhance the overall permeability of many reservoirs, they also create significant permeability anisotropy. Knowledge of the orientation and magnitude of permeability anisotropy has major economic importance in developing and managing a reservoir. It is commonly assumed that the horizontal permeability anisotropy of a naturally fractured reservoir will be elongate along the dominant trend of subsurface natural fracture systems. Although this can be demonstrated to apply in many simple geologic settings, this predictive concept must commonly be modified for stress changes caused by post fracture geologic history of the reservoir, including local variations in stress magnitude and orientation caused by structures. In cases where the local stresses and fractures are superimposed on regional stresses and fractures, the fractures that are parallel to the in situ maximum horizontal stress may provide the dominant control on reservoir permeability anisotropy. This can occur even if the stress-parallel fractures are significantly fewer in number than fractures that trend oblique to the maximum horizontal stress, especially where the stress anisotropy is high. The set of fractures that is open and conductive may change with position around a structure as a function of local stress variations. Knowledge of subsurface fracture trends must be made in conjunction with knowledge of he in situ stress orientations and magnitudes to predict horizontal permeability anisotropy. Fracture reservoir permeability may also change over the life of a reservoir because perturbations in stress state state, caused by drilling, production, and waterflood activities, create changes in the three-dimensional effective stress field, and thus in fracture conductivity. High angle fractures aligned with the local maximum horizontal stress will have the smallest decline in conductivity as the reservoir is produced. These conclusions are supported by core analyses, in situ stress measurements, well tests, and production histories of clastic and carbonate reservoirs.

AAPG Search and Discovery Article #90956©1995 AAPG International Convention and Exposition Meeting, Nice, France