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Abstract

The estimation of the petrophysical properties for the formations belonging to the Golfo San Jorge Basin has been a challenge for geologist,
petrophysicist, and engineers due its lithological complexity and variability of fluid properties. The challenge is even greater in cased holes,
due to the limited number of logging measurements and evaluation techniques available in this environment. However, the advancement of the
technology has enabled new evaluation workflows. The present work shows how a calibrated mineralogical model is the key to accurately
compute the petrophysical properties such as clay volume, porosity, water saturation, and permeability through evaluation techniques not
previously available due to the lack of quality through-casing measurements. The proposed workflow is based on logs that are available both in
open and cased hole condition, like advanced induced gamma ray spectroscopy, sonic, and thermal neutron porosity logs. The first step of this
methodology is to build a mineralogical model using the open hole logs and calibrate it to X-Ray diffraction (XRD) analysis on rock samples.
The second step is to derive the matrix properties from the mineralogical model to correct the porosity logs for matrix effects. These porosities
are then combined to correct for gas/light hydrocarbon effect using a similar principle to that of the Sonic-Magnetic Resonance technique
(SMR); and to compute at the same time a gas volume. The final step consists in quantifying the liquid hydrocarbon volume out of the total
organic carbon (TOC) fraction obtained from the spectroscopy log and combine it with the neutron-sonic gas to compute the total hydrocarbon
saturation. Other open hole measurements, like magnetic resonance porosity, bulk density, and basic petrophysical core analysis, can also be
used to calibrate and quality control the petrophysical model based on spectroscopy, thermal neutron, and sonic logs. This model can then be
applied to spectroscopy, neutron, and sonic logs acquired in cased hole. This work describes the workflow, the applied methodologies and
actual examples that illustrate the effectiveness of this quantitative approach and its applicability in open and cased wells.
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Outline

e Introduction

* A single general cased hole workflow
* Mineral model calibration, the first step
e Matrix properties computation, the second step
» Porosity correction, the third step
e Fluid saturations and permeability, the fourth step

e Results (Cases in different fields)
e Conclusions



San Jorge basin location
and stratigraphy

Area: 200,000 km?
Oil production: ~250,000 bbl/d
Exploration 1907, Production 1920’s
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San Jorge basin challenges

e Difficult drilling environment: long intervals with multiple stacked
sands, swelling shales, depleted zones (mud loses, increased
sticking risks).

e Logging operations can extend for several days Iif tools cannot reach
TD and wiper trips are required (Efficiency V).

o Efficiency is a must for commercial viability. New well construction
practices include the Casing Drilling technique, where cased hole
log evaluation is the only option.

 Complex petrophysics: while open hole evaluation is difficult,
standard cased hole evaluation is even more challenging.




Bajo Barreal reservoirs characteristics

e Multiple sands, 2 to 10 m thick, stacked over long intervals (typically >
1000 m, most wells are vertical)

e Porosity: 16 — 30%, Kgas: 50 — 2000 mD, oil API range: 15 — 30

(s Complex mineralogy (quartz, feldspars, clays, tuffs, volcanic lithics) R
* Low and variable formation water salinity (< 20 ppk NacCl)

e Conductive minerals (clays), fined grained sands (high Swirr)

\- Thick mudcakes, deep mud filtrate invasion y

Challenges




A single general evaluation workflow*

Input data

Mineral fractions
computation

(Core calibrated model)

Matrix properties
computation

Input data
_ | Hydrocarbons
Porosity correction Saturation

(Matrix, Gas) (resistivity/salinity
independent)

* Primarily designed for CH evaluation, but also applicable in the OH environment



Mineral model, 1st step

Elements to minerals, two possible solutions:

1. Use a simultaneous equation solver, with an inversion that
minimizes the difference between the measured and
reconstructed elements from the computed mineral fractions.

E = elements vs. depth matrix
E —_ MC VI = minerals vs. depth matrix

C = elemental concentration endpoints for each mineral

2. Create a correlation matrix between elements and minerals.
The minerals are computed directly without an inversion.

E = elements vs. depth matrix

M — EX VI = minerals vs. depth matrix

X = correlation matrix between elements and minerals



Mineral model, 1st step

» Default coefficients exist for the end-points C matrix, and there
are some global models/correlations for the X matrix, but they
can be “optimized” locally with XRF (elements) and XRD/FTIR
(minerals) core and/or cuttings data.

 E and M are known, C and X can be computed/optimized
E=MC M =FEX

 Mathematically it can be solved as:

C — (MtM) —1 MtE Optimize the end-points to use in the inversion

X —— (EtE) —1 EtM Optimize correlation coefficients



Mineral model calibration, 1st step

Based on the available
X-Ray Diffraction (XRD)
core data.

The advanced induced
GR spectroscopy provides
the elemental
concentrations used to
build the mineralogical
model.

The computation of the
mineralogy from elemental
concentrations is done
through a simultaneous
equation solver program
with optimized end-points.
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Matrix properties computation, 2nd step
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Porosity correction, 3rd step

Porosity corrected

Computed matrix properties
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Fluids saturation and permeability, 4tr

Oil and gas saturations are based
on two methods with different
physical principles.

Gas saturation is computed
simultaneously with PHIT_,,,

based on the SMR method
(Cao Minh, 1999),

Oil saturation is assessed based
on the TOC which is provided by
the advanced induced GR
spectroscopy tool

(Craddock, 2013).

The intrinsic permeability
estimation is based on an
empirical model that relates the
permeability to porosity using the
mineralogy as input as well
(Herron, 1987).
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Case 1
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Conclusions

* We described a workflow that is based on an calibrated mineral
model to compute accurate petrophysical properties, and it can
be applied in the CH environment to the complex Sand Jorge
basin reservoirs.

 The workflow Is enabled by new advanced CH measurements,
the spectroscopy In particular, that provides elemental
concentrations for mineralogy and TOC for oil saturation.

* The methodology has been successfully applied to many wells,
iIncluding 12 casing drilling wells completed during the current
year to date.
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