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Abstract 
 
Reactive transport models provide a systematic approach to evaluate diagenetic processes in terms of fluid flow, heat transport and reactions 
along flow paths, in complex geologic systems. We present a case study where reactive transport modeling was used to investigate the 
silicification of a carbonate buildup. Our modeling workflow consists of three steps of progressively increasing complexity: single cell “batch” 
experiments were used to evaluate the diagenetic potential of several combinations of fluids and lithologies; then, the most favorable fluids 
were applied in column experiments to test the fundamental controls on the process of calcite replacement by silica; finally, the spatial and 
temporal distribution of silicification of a carbonate build-up was simulated under four different flow regimes, in cross-sectional models.  
 
Our findings show that conditions that favor replacement of carbonate by silica include: (1) the interaction of fluids and volcanic rocks to 
produce silica-rich fluids, (2) high concentrations of CO2 to drive calcite dissolution, (3) an elevated geothermal gradient to transport fluids and 
heat, (4) rapid flow, for example through faults, (5) cooling, for example by entrained surface water, and (6) the occurrence of silica in the 
original sediments. We found that massive and pervasive silicification of a carbonate formation is difficult because the common parameter 
space for calcite dissolution and silica precipitation to occur is very narrow, which explains the relative paucity of large-scale carbonate 
silicification in natural settings. 
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Study Goals
1. Carbonate-silica replacement process and impact on reservoir quality

2. Spatial distribution of silicification in carbonate buildups
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Reactive Transport Modeling
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Four conceptual models
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Four conceptual models
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Workflow for diagenetic modeling
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Workflow: 0D simulations

• single cell
• steady state
• vary lithology & fluids
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Results: 0D simulations
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Workflow: 1D simulations

evaluate:
• Fluids
• Lithologies

• Flow rate
• pCO2
• Temperature
• Time

sh
al

e

ba
sa

lt

silicifying fluid in

fluid out

lim
es

to
ne2. Fundamental

controls of carbonate 
replacement by silica

1. Silicifying
fluid 
composition

3. Spatial
distribution of 
silicification



fo
rs

te
rit

e

di
op

si
de

an
or

th
ite

qu
ar

tz

ca
lc

ite

Results: 1D simulations
Time: 0 Ma 3 Ma
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Results: 1D simulations
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Workflow: 2D conceptual models
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Workflow: 2D simulations
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Results: 2D Kohout circulation, 1 Ma
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Workflow: iterations
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Conclusions

• Massive and pervasive replacement of carbonate by
silica is difficult: common parameter space for
simultaneous calcite dissolution and silica precipitation is
narrow

• Requires very specific geologic setting and conditions:

• An effective driver for fluid flow, such as an elevated
geothermal gradient

• An effective silica-rich fluid, for example hydrothermal fluids
circulated through volcanic/igneous rocks

• It is favored by rapid flow rates and high CO2

• Can be favored by cooling, for example by lake water
intruding into the carbonate buildup

• May require some initial silica in the system (biogenic? clay
diagenesis? other?)

• This style and scale of alteration can probably only be
found in similar geological settings and not elsewhere

• Reactive transport modeling is a valuable tool to evaluate
diagenetic processes and reservoir quality trends


	exp arial.pdf
	Reactive Transport Modeling approach to studying silicification of carbonates
	Слайд номер 2
	Слайд номер 3
	Reactive Transport Modeling
	Four conceptual models
	Four conceptual models
	Workflow for diagenetic modeling
	Workflow: 0D simulations
	Results: 0D simulations
	Workflow: 1D simulations
	Results: 1D simulations
	Results: 1D simulations
	Workflow: 2D conceptual models
	Workflow: 2D simulations
	Results: 2D Kohout circulation, 1 Ma
	Workflow: iterations
	Conclusions
	Tusen takk!




