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Abstract 

The stratigraphic variability of fluvial architectural elements and their internal lithological and petrophysical heterogeneity influence static connectivity 

and fluid flow. To explore the impact of fluvial architecture and facies heterogeneity on reservoir performance, we evaluated well-exposed outcrops of the 

Burro Canyon Formation in Rattlesnake Canyon, Colorado. Analysis of sedimentology and channel-stacking geometries of the Burro Canyon Formation 

provides insight into the low net-to-gross ratio braided fluvial style during the Early Cretaceous. 

We used stratigraphic measured sections, thin-section petrography, outcrop gamma-ray measurements, and UAV- (Unmanned Aerial Vehicle-) based 

photogrammetry to constrain three-dimensional (3-D) geologic reservoir models of the fluvial deposits. Measured sections and thin- section analysis 

capture the sedimentology and stratigraphic variability of the fluvial sandstone bodies. We used UAV-based photogrammetry and outcrop gamma-ray 

measurements to classify stacking and geometry of the channel-complex systems. We used outcrop data to condition three-dimensional (3-D) geologic 

(static) and dynamic reservoir models using multiple scales of heterogeneity. Large-scale heterogeneity is associated with architectural elements and their 

geometries. Small-scale heterogeneity is related to sedimentary structures and internal fluvial sandstone variability. 

With multi-scale heterogeneity captured in petrophysical property models, subsurface fluid flow is simulated under various conditions. Using a 5-spot 

pattern, a single injector surrounded by four producing wells, both the large- and small-scale geologic models are simulated over 30 years for both black 

oil and condensate gas production. Comparison of the impacts of large- and small-scale heterogeneities on reservoir fluid flow, storage capacity, and 

recovery provides insight into the impacts of fluvial heterogeneity on reservoir performance. 
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Abstract Study Area 

The stratigraphic variability of fluvial architetural elements and their 
intemallithological and petrophysical heterogeneity influenc static 
connectivity and fluid flow. To explore the impact of fluvial architecure and 
facies heterogeneity on reservoir performance, well-exposed outcrops of the 
Cretaceous Burro Canyon Formation in Rattlesnake Canyon, Colorado, are 
evaluated. Analysis of the sedimentology and channel architecture of the 
Burro Canyon Formation provides insights into the low net-to-gross ratio, 
sandy, braided-fluvial style. The Burro Canyon Formation represents a South 
saskatchewan type, perennial, braided fluvial system. A single depositional 
sequence is present in Rattlesnake Canyon contianing a series of stacked 
amalgamated and semi-amalgamated channel complexes, composed of four 
architectural elements: amalgamated channel complexes, amalgamated 
fluvial-bar deposits, isolated fluvial-bar depsoits, and floodplain fines. 

Stratigraphic measured sections, outcrop gamma-ray measurements, and 
UAV-based (Unmanned Aerial Vehicle-based) photogrammetry are used to 
constrain two-dimensional (2-D) and three-dimensional (3-D) static reservoir 
models of the fluvial deposits. Resulting breathrough times (BTT) and sweep 
efficiency suggest subsurface performance is most effective perpendicular to 
paleoflow direction in amalgamated channel sequences. Perpendicular to 
paleoflow, BTT occurs 9% faster than parallel to paleoflow and sweep 
efficiency is, on average, 16% greater. Sweep efficiency and BTT are greater 
perpendicular to paleoflow due to greater sandstone connectivity in this 
orientation, variability of preserved channels and lateral pinchouts results in 
lower recovery efficiency. Reservoir heterogeneity can account for 50% 
variation in BTT and lower recovery efficiency by 5% through low 
petrophysical zones that trap fluids. Cemented conglomeratic facies decrease 
recovery efficiency by 15%, but increase sweep efficiency and BTT by 28% 
and 32%, respectively, creating fluid-flow barriers as conglomeratic facies fill 
basal scours in the Burro Canyon Formation. 
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Research Questions Workflow Outcrop Analysis 

1. What is the sedimentology and 
stratigraphic hierarchy of the Burro 
Canyon Fromation? 
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Pix4D Outcrop 
Model 

2. What is the depositional 
envrionment for the Burro Canyon 
Formation? 

Measured sections, outcrop samples and paleocurrent 
measurements obtained 

Pix4D point cloud importcd into pctrcl. Pscudo 
wells created and constrained to outcrop facies 

along canyon walls 

3. What are the types and geometries 
of architectural elements present? 

4. What is the impact of different 
scales of depositional heterogeneity 
on reservoir performance? 

Outcrop Constrained 
Geologic Model 

Geolgoic (static) 2-D and 3-D models are created 
from canyon pseudo wells and constrained to 

variogram data from canyon geometries 

Petrophysical Model 
Constraints 

Geologic reservoir model populated with porosity and 
permeability values determined from core data 

A) Study area located in the southwestern 
portion of the Piceance Basin, to the south 
of Grand Junction and west of Delta, 
Colorado. Dark shaded features indicate 
exposed outcrops of the Burro Canyon 
Formation. 

B) Rattlesnake Canyon study area contains 
three exposed walls of Burro Canyon 
Formation. Locations of measured sections 
1-3 are shown. Green shaded area indicates 
canyon walls imaged with a DJI Phantom 3 
Drone . 

C) Early Cretaceous pa1eomap showing 
location of the western interior seaway in 
proximity to the Piceance Basin. At this 
time, sediment influxes from the Sevier 
orogeny deposit the Burro Canyon to the 
northwest. 

D Piceance Basin Outline 

Petrel Outcrop 
Model 

Photogrammetry data imported to create dense 
pointcloud and 3-D surface model of Rattlesnake 

Canyon. Channel geometries mapped and 
evaluated 

Simulated Reservoir 
Model 

Reservolf propertIes to create 
dynamic reservoir models to be simulated through 

breakthrough time 
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C

Amalgamated Fluvial-Bar Deposits

Model Outline

Composite measured section of the Burro Canyon 
Formation in Rattlesnake Canyon shown in comparison 
with the gamma ray log from the Mitchell Energy Federal 
8-1 well. Composite measured section goes from the upper 
most Morrison Formation to the base of the Dakota 
Formation encompassing the entire Burro Canyon 
Formation present in Rattlesnake Canyon. Paleocurrent 
measurements taken throughout the Canyon give a vector 
mean of 58º.

Eight individual lithofacies have been 
identified in the Burro Canyon Formation 
of Rattlesnake Canyon. A) Images of eight 
identified lithofacies present in the Burro 
Canyon Formation. B) Descriptions of 
eight outcrop lithfacies found in 
Rattlesnake Canyon, depicting identifying 
factors such as grain size, sorting and 
depositional environment. 

A)

B)

Thin section images representing lithfoacies and grains present in the Burro Canyon Formation within Rattlesnake Canyon.  
Framework grains largely composed of quartz, chert and calcite with conglomerates containing siltstone, chert and lithics. Cement is 
composed of calcite and occasionally silica. Quartz overgrowths are present trhoughout trough cross-bedded sandstone. Iron oxides are 
presenent throughout reservoir facies intervals. 

N = 124
VM = 58º

Systematic imaging of 
Rattlesnake Canyon was 
performed to ensure full 3-D 
coverage of the Burro 
Canyon Formation present. 
Images were taken at three 
distances from the outcrop 
to show not only geometries 
present but also sedimentary 
structures. Red dots indicate 
location of drone during 
imaging of the canyon. 

Drone images were 
imported into Pix4D 
program in order to 
map channels present 
for width, thickness 
and spatial 
relationships. 

Architectural elements are defined based off of the 
classification scheme defined by Patterson et al. 2010, 
and Sprague et al, 2002.

Top: Parallel to paleoflow orientation, red box 
indicates 2-D model boundary along the southeast 
wall. Amalgamated channel complex, amalgamated 
fluival-bar deposits and isolated fluvial-bar deposits 
compose two indiviual channel complexes present. 
The lower channel complex is amalgamated and the 
upper is semi-amalgamated. These two channel 
complexes represent a single depositional sequence 
bounded by the K-1 and K-2 unconformities in the 
Burro Canyon Formation.

Left: Perpendicular to paleoflow orientation, red box 
indicates 2-D model boundary along the south wall. 
Amalgamated channel complex, amalgamated 
fluival-bar deposits and isolated fluvial-bar deposits 
compose two indiviual channel complexes present. 
The lower channel complex is amalgamated and the 
upper is semi-amalgamated. These two channel 
complexes represent a single depositional sequence 
bounded by the K-1 and K-2 unconformities in the 
Burro Canyon Formation.

Model workflow showing two- and 
three-dimensional models created to assess 
reservoir performance in Rattlesnake Canyon. 
Two basic 2-D models were created in each 
orientation to assess reservoir heterogeneity. 
Within each model, lithofacies models and/or 
petrophysical models are created in order to 
test the effects of changing lithofaices and 
petrophysical variogram ranges on reservoir 
performance. A single lithofacies model was 
created in 3-D with two petrophysical models 
to observe how the reservoir performs in 3-D, 
both normally and with cemented 
conglomeratic facies.

Thirty-eight individal pseudowells and corresponding 
lithofacies logs were created in each orientation in 
order to constrain the models to the exposed canyon 
walls. This creates geometries and lithofacies 
corresponding with those observed in outcrop. Each 
model uses 3,000,000 grid cells that are 1 m x 1 m x 
0.1 m to ensure fine resolution within models.

Two-dimensional models oriented parallel and perpendicualr to paleoflow. Vertical exaggeration reveals 
internal heterogeneities preserved within individual models. Scour surfaces annd mudstone drapes are observed 
creating internal fluid-flow baffels within the reservoir sandstones..

Three-dimensional models were created using 151 pseudo wells. 127 
of these pseudo wells are tied directly to outcrop using a 30-foot 
sspacing along exposed Burro Canyon Formation, remaining 24 wells 
are used to constrain interior of canyon without exposures present. 

Three-dimensional lithofacies 
model of the Burro Canyon 
Formation in Rattlesnake 
Canyon. Model utilizes 
~850,000,000 model grid cells. 
Grid cells are 1 m x 1 m x 0.1 
m. Vertical exaggeration reveals 
internal heterogeneities 
preservved with fine scale 
resolution in model. Scour 
surfaces and mustone drapes 
can be seen inside reservoir 
sandstones creating internal 
heterogeneity.

Lithofacies models are populated with petrophysical data from Mitchell 
Energy Federal 8-1 well. Porosity and permeability values are assigned 
to individual lithofacies to create the most accurate reservoir model.
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Conclusions
- The Burro Canyon Formation was deposited in a sand-prone, low-sinuosity, braided 
fluvial environment of the South Saskatchewan type.
- Internal reservoir heterogeneity can account for a 46% shorter breakthrough time 
and a 21% decrease in sweep efficiency of the reservoir.
- Models oriented perpendicular to paleoflow exhibit higher sweep efficiency (16%) 
than oriented parallel to paleoflow.
- Changes in lithfoacies variogram ranges have little to no impact on production 
(~1%)
- Changes in petrophysical variogram ranges have the greatest impact on BTT
- Cement in the reservoir can decrease recovery efficiency by 22% and sweep 
efficiency by 25% in 2-D and increase sweep efficiency by 28% in 3-D.

Acknowledgements:

Reservoir models are placed at Burro 
Canyon Formation subsurface conditions 
and simulated using a waterflood from an 
injector to producer well. Simulations 
were analyzed for breakthrough time 
(BTT), sweep efficiency (SE) and 
recovery efficiency (RE)

Comparing three levels of internal heterogeneity, SB2-P1 which 
has no internal heterogeneity, SB2-P4 which uses a “tank” 
petrophysical distribution, and CF2-L1-P1 the most heterogeneous 
model, waterflood at breakthrough time is shown. Internal 
heterogeneity decreases sweep efficiency and recover efficiency 
while shortening breakthrough time by creating fluid-flow 
pathways

Vertical exaggeration (VE=4) of simulated 
models reveals impacts of internal 
heterogeneities on waterflood. Scoured 
channels create fluid flow baffles decreasing 
water saturation at that location. Water 
saturation in channel-fill model does not 
distribute as thouroghly as the 
sandstone-body model.

Three-dimensional water saturation model showing distribution of waterflood 
thorughout the reservoir. Amalgamated channel complex is the most prolific 
architectural element, providing higher net-to-gross ratios and a larger sandstone 
body connectivity. 

Top view of the two 3-D waterflood simulations 
performed. Top shows petrophysical distributions 
from the Mitchell Energy Federal 8-1 well. 
Bottom shows cemented conglomeratic facies. 
water saturation of the reservoir significantly 
decreases when cement is applied. scour surfaces 
observed contain little to no water saturaiton, 
reducing fluid flow pathways.

Side view comparison of two simulated 3-D models. Planar laminated and trough 
cross-bedded sandstone show the highest water saturations in both models, 
conglomerates shwos singificant decrease in water saturation in cemented model. Extent 
of the waterflood through the reservoir is lessened in the semi-amalgamated complexes.
Sweep efficiency increases by 28%.CF-L1-P1
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Results of Breakthrough time (BTT), sweep efficiency 
(SE) and recovery efficiency (RE) of each simulated 
model.

Production charts for the 
three basic reservoir 
models with different 
levels of heterogeneity. 
Comparison of 
perpendicular and parallel 
to paleoflow orientations 
shows higher connectivity 
perpendicular to 
paleoflow resulting in 
16% higher sweep 
efficiency than parallel. 
Breakthrough times are 
longer in this orientation.
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