Quantitative Calibration of Hyperspectral Core Imaging Data: A New Method for Producing Continuous, High-Resolution Mineralogical Characterization of Cores from both Conventional and Unconventional Reservoirs

J. Greene*1, T.H. Kosanke2, P. Linton3;

1. CoreSolution Technologies; 2. Consultant; 3. TerraCore International

BACKGROUND

- Heterogeneity within oil and gas reservoirs can present challenges during lithological and flow unit characterization and upscaling
- Unconventional resources in particular:
 - Thin beds and laminae can be missed by wireline logging
 - Mineralogical and organic variations are subjectively difficult or impossible to define visually in core
 - Potential disconnect when upscaling micro and nano scale, discrete analyses to log resolution for modeling
- Traditional tools and workflows have struggled to fully capture, upscale, and model unconventional heterogeneity
- How can the industry leverage technological advances and big data analytics to more efficiently explore and develop oil and gas resources?

OBJECTIVES

- Capture fine-scale heterogeneities utilizing hyperspectral core imaging from a variety of conventional and unconventional cores
- Provide continuous, quantitative mineralogy by leveraging existing XRD data to develop a new method to calibrate acquired hyperspectral data
- Evaluate calibrated data and results:
 - How accurate is the calibration?
 - What unique value can the calibrated results provide compared to existing analyses?
 - Can the calibrated results be easily integrated into geologic workflows?

HYPERSPECTRAL CORE IMAGING

- Hyperspectral imaging is a blend of digital imaging and infrared spectroscopy
- Formation evaluation applications allow mineralogical and textural information to be captured from a variety of sample types including slabbed core, cuttings, and sidewall core faces
- Chemical bonds within minerals produce specific absorption features when excited by energy sources (light or heat) – the resulting combination of absorption features is indicative of mineral or multi-mineral presence

HYPERSPECTRAL CORE IMAGING (CONT.)

• The sensitivity to subtle elemental variations provides an enormous amount of information – a perfect fit for data mining approaches

WORKFLOW: DATA ACQUISITION

Spectral Range
Spectral Bands
Spectral Sampling
Spectral Resolution
Spatial Resolution

	SWIR Spectrometer	LWIR Spectrometer
ے	1000-2500 nm	8000-12000 nm
s	288	84
3	5.6 nm/band	48 nm/band
١	12 nm	100 nm
۱	300-500 μm	

 False color composite image to visualize raw data

- False color composite image to visualize raw data
- Core masking process to remove background and noise attributing signal

- False color composite image to visualize raw data
- Core masking process to remove background and noise attributing signal
- Artificial neural network (SOM)
 classification to group spectral and
 spatial dissimilarities

- False color composite image to visualize raw data
- Core masking process to remove background and noise attributing signal
- Artificial neural network (SOM)
 classification to group spectral and
 spatial dissimilarities
- Image data associated to depth values

- False color composite image to visualize raw data
- Core masking process to remove background and noise attributing signal
- Artificial neural network (SOM)
 classification to group spectral and
 spatial dissimilarities
- Image data associated to depth values
- SOM image data generated into empirical log format

WORKFLOW: MODEL BUILDING

- Lookup query is used to associate the combined series of SWIR + LWIR
 SOM data with each XRD control point
- SOM-XRD associations are compiled to build a multi-dimensional system of equations

WORKFLOW: MODEL BUILDING (CONT.)

- Constraints are implemented:
 - Prevent sum of abundances greater than unity (100%)
 - Prevent sum of individual mineral species greater than mineral group

- Hierarchal series of regressions are performed by residual sum of squares and/or root mean square error conditions
- Solved variables then applied to excluded XRD control points for forward modeling validation

CALIBRATION RESULTS

Third Bone Spring (N=11)

Austin Chalk (N=28)

CALIBRATION RESULTS (CONT.)

Eagle Ford (N=21)

Wilcox (N=21)

CALIBRATION ASSUMPTIONS

- All variations in composition and texture are encompassed in the SOM classifications
- By calibrating to an external dataset, the model assumes the validity and accuracy of that dataset
- Predictive capability of the calibrated results is a direct function of the number of calibration points, as well as the range of SOM classifications they cover
- Bulk hyperspectral data and the associated external dataset point involve the same representative rock area/volume
- Differences between the comparative area/volume can contribute to less accurate calibrations

UPSCALED CORE CALIBRATION

UPSCALED CORE CALIBRATION (CONT.)

- Thin interbedded layers and laminae are captured and quantified
- The addition of high-resolution, continuous mineralogical trends with depth adds significant understanding compared to discrete XRD point analyses

CONCLUSIONS

- Hyperspectral core imaging effectively captures high-resolution mineralogical variations on the slabbed core surface that are not visually identifiable
- Positive relationships between the SOM mineral model and known XRD values indicate the SOM classifications are successfully separating the high/low limits of the XRD values
- The R² values close to 1 indicate the calibration mathematics are predicting the mineral abundances with minimal scatter
- Quantitative, continuous mineralogy offers improved characterization of lithological units:
 - Net-to-gross determinations and landing zone refinement
 - Predicting geomechanical impacts for completion design
- Opportunities for future development and evaluation:
 - Artificial intelligence applications can calibrations become more universal?
 - MWIR sensitivity to hydrocarbons is organic characterization possible?

