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Abstract

Adequate knowledge of reservoir architecture is key in the placement of injector wells, pressure maintenance, and secondary recovery which in
turn can contribute to reserve growth. The main aim of this study is to determine the impact of depositional environment and primary facies
architecture on reservoir performance. Fields from the Norwegian Sea, the Norwegian North Sea and the Barents Sea were used to build a
database of 91 fields all with more than 11 million barrels of oil in place. A total of 76 clastic reservoirs were classified into three gross
depositional environments: continental, paralic/shallow marine and deep marine. 61% of the reservoirs are paralic/shallow marine, 11% are
continental and 28% are deep marine. Reservoirs were further classified into eight sub-environments to capture depositional complexity.
Representative reservoirs from each sub-environment were analyzed at architectural element scale using logs and core to determine reservoir
heterogeneity.

Principal component analysis (PCA) was utilised to identify the importance of stratigraphically dependent variables in the dataset, and to
determine the key parameters that have strong effects on the overall variability of the data. PCA reveals that gross depositional environment
and sedimentological related parameters dominate the first four principal components. Fluid properties such as APl and water saturation are
unexpectedly among the less important parameters. A simple box plot of reservoir depositional sub-environment against recovery factor for
reservoirs produced via pressure depletion and those supported through water injection reveals weakening recovery with increasing
stratigraphic heterogeneity. Delta front, wave-dominated shoreface, tidal non-delta, stacked multistorey fluvial and deep marine reservoirs have
relatively good recovery, whereas, offshore/transition zone reservoirs and isolated meandering fluvial channel deposits have low recovery.
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1.0 What Controls Production?

Hydrocarbon production is controlled by a wide range of factors. The goal of . .
this study is to investigate the relative importance of these empirically by ap- Paralic/shallow marine reser-

plying modern data analytics to the dataset from the Norwegian continental . VOIr: Gamma, sonic, sedimentological logs, 5
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3.0 What’s in the database?

Parameters recorded for each field include:
Geological
Depositional environment (with SAFARI Schema)

4.0 Initial Analysis
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Deep marine reservoir: Gamma,
sonic sedimentological logs, and core imag-
es of the Lista and Heimdal Formations of
the Grane field showing the distribution of
the reservoir intraformational fines.
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Continental reservoir: Sedimentological Total reservoir volume

log, gamma, sonic logs, and core images of the
Skagerrak Formation of the Gaupe field showing
sand-body distribution of the reservoir.
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2.0 Workflow and Methods

Recovery Factor (estimated for end of field life)
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Stem diagram showing the relationship between recovery against strati-
Measure of the degree of depositional heterogeneity/flow units graphic heterogeneity for all the reservoirs

for the different reservoirs using a scale of 0-8.

About SAFARI

SAFARI is an on-going Joint Industry Research Project at UniResearch CIPR and the University of Aberdeen supported by a consortium of currently 14 Oil Companies, the Research Council of Norway and the Norwegian Petro-

leum Directorate. The goal of the SAFARI project is to develop a fully searchable repository of geological outcrop data from clastic sedimentary systems for reservoir modelling and exploration.
ARLLEN
bp 2 2 OM | 1000 km =~ T\ |
bayerngas, {:} centrica conocoPhillips ‘ i\
DEA

N -

The SAFARI project includes a fully searchable database that is accessed through the website www.safaridb.com The site includes:

Information from 350 outcrops, including descriptions, logs, photos, sections, reservoir models Do PR

Over 200 of these sections have photo realistic 3D models (Virtual Outcrops) that allow the user to fly around the outcrop in a purpose built web browser e =A¥ norge

A tool for identifying modern analogues to reservoirs in GoogleEarth V=R pointresources northern North Sea, Norwegian Sea and the Barents Sea. Field names in red have

[ [ Statoil
Over 6500 geometric measurements of reservoir elements from outcrops

" The Research Council
of Norway

Variograms and MPS training images extracted from outcrop analogues g VNG Norge in green
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Map of the Norwegian continental shelf showing different wells and field names in the

continental reservoir, shallow/parallic reservoirs in yellow and deep marine reservoirs




Machine Learning Techniques

5.0 Data Pre-processing 6.0 Support vector machine Models
The dataset was normalised using the formula below; Support Vector Machine Models Statistics

(= min(d)) # (max(n) - min(n))

max(d) - min(d) () I I I
Where, l I . N M-SE N

Min(d)= Minimum or lowest value in data RMSE R-Square

B Geological parameters B Engineering parameters m Geological /Engineering parameters

Max(d): Maximum or hlghGSt value in data A comparison between the three machine learning models trained with a set of 16 most important parameters in

. .. : the database categorised into geological, engineering and geological/engineering parameters.
Min(n)= Minimum value in new range

Predicted against actual volumetric recovery factor
Max(n)= Maximum value in new range

Boxplot of average porosity and bulk rock volume

Avg. F’n:lr,:u\;it}.nr (%) Bulk Rock anlume (108 m3)

Predicted volumetric recovery factor (Fraction)

0.6 0.8

' Actual volumetric recovery factor (Fraction)
+ Relationship between recovery factor predicted by machine learning model (SVM model) and volumetrically esti-

mated recovery factor.

T T
Avg. Porosity (%) Bulk Rock Volume (108 m3) Reservoirs Depositional Environment Estimated RF (Fraction) Predicted RF (Fraction) Estimated RF (%) Predicted RF (%)
0.4375 0.4375

Heather Paralic/Shallow marine

0.578125 0.5782 40 40.0048

Box plot showing outliers in two parameters (average porosity and bulk rock volume)

Magnus Deep Marine

0.46875 0.4687 33 32.9968

South Brae Deep Marine

0.234375 0.2344 18 18.0016

Staffa Paralic/Shallow marine

Boxplot of Permeability, Pressure and original oil in place 590675 59067 5 50,9504
Strathspey Brent Group Paralic/Shallow marine
Avg. Permeability (mD) Pressure (bar) Original oil in place (Mill. Sm3) NaN NaN
. ' . Strathspey Bank Group Continental

0.734375 50.0016

Thistle Paralic/Shallow marine

0.65625 55.7744
Glitne Deep Marine

0.984375 66.008
Grane Deep Marine

NaN

Gungne Continental

0.578125 40.1392

Gyda Paralic/Shallow marine

0.9375 46.7824 0.2534
Heimdal Deep Marine

0.78125 53.0736

Jotun Deep Marine

0.4375 38.7632

Lille Frigg Paralic/Shallow marine

0 2.9936

Mime Paralic/Shallow marine
63.0256
Oseberg 1 Paralic/Shallow marine

63.0192

T ! - o ! . Oseberg 2 Paralic/Shallow marine
Avg. Permeability (mD) Pressure (bar) Original oil in place (Mill. Sm3) 27.1152

Oseberg Sor 2 Paralic/Shallow marine

Average permeability, initial pressure and original oil in place have outliers, such observa-

_ L Table showing fields, depositional environments and their recovery factors both predicted and actual. The last col-
tions were eliminated from the database.

oured column shows good match between prediction by the model and actual recovery in the database
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7.0 Random Forest Models

Important parameters in predicting oil recovery factor
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Important parameters in predicting oil reservoir rate
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Important parameters in predicting oil depletion rate
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8.0 Conclusion

A unique database consisting of 32 parameters was developed to evaluate
the role of geology in controlling oil field performance.

¢ The database was used to train and test a set of support vector machine,
linear regression and random forest models in order to predict oil fields
performance metrics.

¢ A combination of geological and engineering parameters produced the
best predictive models, revealing the importance of some key geology
dependent parameters in controlling oil field performance.

¢ Important geology dependent parameters revealed by these machine
learning techniques are; depositional environment, depth of burial, porosi-
ty, permeability, initial pressure, stratigraphic heterogeneity, structural
complexity and diagenetic impact.






