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Abstract 

In highly heterogeneous basins with complex subsurface geology, as the Nile Delta basin, the accurate prediction of reservoir characteristics is 
a must. The reservoir characterization is a continuous process that begins with the field discovery and ends with the last phases of production 
and abandonment. Reservoir static modeling is the final step in the reservoir characterization process and consists of building an upscaled 
geologic model to be an input to the fluid simulations. The geostatistical reservoir modeling (stochastic modeling) methods are widely used 
instead of the traditional deterministic modeling methods to consider the spatial statistics and uncertainties. However, the modeling workflows 
are slow, requiring months from initial model concept to flow simulation or other outputs; Moreover, the early stages errors become cumulative 
and are difficult to retrospectively change. The neural network inversion gained popularity over the last decades for its ability to establish 
nonlinear relationships between the petrophysical logs and seismic data. It has been used to predict various reservoir properties with a 
reasonable amount of accuracy. Its main limitation resides at seismic resolution, and to overcome this problem a resolution-enhancing 
workflow has been adopted. This case study is from a Pliocene turbidite field in the offshore Nile Delta to illustrate the proposed modeling 
workflow. As a beginning, the resolution enhancement of seismic data is accomplished using derivative attributes and structural smoothing. 
Then, after proper well-log data conditioning, the training and cross-validation of Probabilistic Neural Network (PNN) are performed to 
produce shale volume (Vsh), porosity (φ), and water saturation (Sw) 3D volumes. The permeability (k) is calculated from poro-perm 
relationship inside the reservoir. The results are then sampled in 3D grids and tested using dynamic simulation method to assimilate production 
history. After the initial history match process, PNN parameters are adjusted to improve the match. The final model represents the best match 
to original field measurements and production data, which is then used in drilling decisions and production planning. The proposed neural 
network workflow reduces the reservoir modeling construction time by 80-90%, mitigates the cumulative error problems, and decreases the 
statistical uncertainty as it depends purely on seismic data to distribute the reservoir properties. 
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Area of Study

• Location

– Egypt, Offshore Nile Delta, West Delta Deep Marine 

(WDDM) concession

• Sequoia field 

– One of the biggest Pliocene gas fields

(modified from Mohamed et al., 2014 and Samuel et al., 2003)
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Large-Scale Reservoir Architecture
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Sequoia Channel Evolution Summary

(modified from Mohamed et al., 2017)



(modified from Mohamed et al., 2017)



(modified from Mohamed et al., 2017)



(modified from Mohamed et al., 2017)



Sequoia Field – Reservoir Characteristics 

• Multiple stacked channels that are up 
to 200 m in gross thickness, 77 m of 
pay

• An average effective porosity of 24% 

• An average water saturation of 34%
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Seismic Resolution Enhancement – Band-Pass Filtering
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Well Log Conditioning

Conditioning:
- Resampling 

@ 4 ms
- Smoothing
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PNN Results – Water Saturation
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PNN Results – Porosity
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PNN Results – Shale Volume
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Stochastic Reservoir Modeling Workflow
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• Stochastic reservoir modeling

– Consider the spatial statistics 
and uncertainties.

– Require months from initial 
model concept to flow 
simulation.

– Early stages errors become 
cumulative and are difficult 
to retrospectively change.

Stochastic 
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The Proposed Workflow

Water Saturation and 
Porosity from PNN

• Decreases the statistical uncertainty.

• Reduces the reservoir modeling construction 
time by 80%.

• Mitigates the cumulative error problems.



Static Modeling
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Porosity and Water Saturation Resampling
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Porosity-Permeability Relationship
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Dynamic Testing
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Dynamic Testing
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Conclusion

• Probabilistic neural network predicts shale volume, porosity, and water saturation 
3-D volumes 

– Fast training process 

– Results show high accuracy

• Integrating the PNN in the static modelling

– Decreases the statistical uncertainty and mitigates the cumulative error problems

– Reduces the reservoir modeling time by about 80%

• Some details may be lost during the resampling process

– Finer grid is required or multi-segment model

– Apply multipliers
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