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Abstract

A hybrid model of dolomitization is responsible for dolomitization of Permian carbonate strata via: 1) reflux-mechanical compaction
dolomitization during the Permian; and 2) tectonic and topographic driven dolomitization during the Late Eocene to Early Miocene.

Reflux-Compaction Model:

Study of >3000 thin sections and >150 cores revealed that dolomitization of Permian strata was during initial burial as strata experienced
mechanical compaction. Dolomitizing brine was sourced from a distant, broad, inner ramp lagoon-intertidal environment. During burial, Mg?*
rich brine was expelled by mechanical compaction to dolomitize down-dip carbonate strata. Proof was mechanical compaction of grains and
mud prior to lithification by dolomitization and is herein called the reflux-mechanical compaction model of dolomitization. Dolomitization
formed cloudy, inclusion-rich, E-planar, highly etched dolomite. Porosity was preserved in grain-rich strata, with additional porosity created as
the brine became depleted with Ca®* and CO3?", with partial dissolution of carbonate grains during dolomitization. Relative sea level
fluctuations during late-highstand—early-lowstand restricted the inner ramp to form Mg?* rich brine favored density-driven circulation of brines.
Inner ramp strata are 1.25-3+ times wider than down-dip carbonate strata. A problem is the speed with which brine could move from up-dip to
down-dip.

Tectonic and Topographic Driven Models:

During the Late Eocene-Early Miocene, uplift formed the Southern Rocky Mountain Epeirogen (SRME) and Rio Grande Rift (RGR) via
crustal heating as intrusive plutons and extrusive volcanism formed the Trans-Pecos magmatic province and larger North American Cordilleran
alkali igneous belt. By 38-35 Ma, an erosional surface extended across New Mexico to form an immense recharge area into the Permian Basin.
Meteoric water heated to 113°-224° C by contact with plutons. During recharge, undersaturated meteoric water partially dissolved Permian
dolomite and precipitated clear, inclusion-poor, E-planar, limpid dolomite cement. Area of meteoric recharge was 130 miles (209 km) wide and
partially to completely swept Permian Basin oil fields of primary and secondary recovery oil to residual oil saturation to waterflood (Srow),
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forming residual oil zones (ROZ’s). Extension of RGR, during Middle-Late Miocene, destroyed the massive recharge area and allowed oil
columns to partially to completely resaturate with oil or gas.
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“Tight West Texas Dolomites Waterflood Well”

Ganesh Thakur
Past President SPE

Primary Recovery = 15-20% OOIP
Secondary Recovery = 15-20% OOIP

Tertiary Recovery = 10+% OOIP
Permian Basin Dolostone Reservoir:
Ave Porosity = 9%, Range = <2-31%

Ave Perm = 6 mD, Range = 0.001-2000 mD




Outline:

* Data base

* Permian — Reflux-mechanical compaction dolomitization

* Late Eocene-Early Miocene — Tectonic-topographic driven-
hydrothermal dolomitization

* Enhanced porosity-permeability, connectivity & productivity
of strata & formed residual oil zones (ROZ’s)

* Conclusions




Data base (Permian):

131 outcrop measured sections

e 150+ core descriptions

3000+ thin section petrography

e Scanning electron micrographs (SEM)
* High pressure mercury injection capillary pressure (MICP)
e (Cathodoluminescence data

* Fluid inclusion data
 Geochemistry (oil-water)

* Engineering data

 Production data



Dolomitization Models
Machel (2004)

Penecontemporaneous to Shallow Burial
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Permian Basin
Home of Reflux Model of Dolomitization
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Permian Dolomitization
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Permian Depositional Models
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Grayburg Formation
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Permian Basin
Ramp Profile Time T2
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Long Distance Transport of Magnesium (Mg?*) Rich Brine
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Late Eocene-Early Miocene
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Southern Rocky Mountain Epeirogen
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Permian Basin

SOUTHERN ROCKY MOUNTAIN EPEIROGENE
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Overexposed
Cathodoluminescence

Eunice Monument
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Grayburg Formation
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Highly Altered Rock Fabric

Multiple Partial Dissolution

& Precipitation (Recrystal-
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Horizontal Wells
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Permian Basin
West-East Cross Section
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“All you need is horsepower”
Ganesh Thakur
Past President SPE
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Partially to Completely Sweeps Oil Columns to Residual Qil Saturation (So.,)

Hot Meteoric Recharge into Permian Basin




Middle-Late Miocene
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Rio Grande Rift

» 15t Phase: Initial Uplift & Tilting T T L ———— i
(28.4 to 16 Ma, Late Oligocene- N S :
Early Miocene)

e 274 Phase: Rapid Extension-
Transtension formed Horsts &
Grabens (16 to 5.33 Mg,
Middle-Late Miocene)

e 3rd Phase: Quiescennce,
Erosion, Stream Entrenchment
& Piracy (5.33 Ma to Present,
Pliocene-Recent)

For———r . D Rio Grande Rift

¥
| f | -

BRRRRRREEEETT T T T T T 11

-110° -108° -106° -104° -102° (m)
100000 0 100000

(meters)

Eaton (2008)




Permian Basin
West-East Cross Section

RIO GRANDE RIFT Lack of Horsepower:

m ' . Ao B T Cool, Dramatically Reduced Meteoric
‘ Recharge into Permian Basin

Lindsay (1998; 2014; 2016)
Sacramento, Guadalupe, Sierra Diablo, Delaware, Apache & Glass Mtns
Attached to Permian Basin



Middle Miocene - Present
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“Tight West Texas Dolomites Waterflood Well”

Ganesh Thakur
Past President SPE

Primary Recovery = 15-20% OOIP
Secondary Recovery = 15-20% OOIP

Tertiary Recovery = 10+% OOIP
Permian Basin Dolostone Reservoir:
Ave Porosity = 9%, Range = <2-31%

Ave Perm = 6 mD, Range = 0.001-2000 mD




Conclusions:

Hybrid dolomitization of Permian Basin strata
15t Permian — Reflux-mechanical compaction dolomitization

Preserved rock fabric & porosity-permeability
2"9 Late Eocene-Early Miocene — Tectonic-topographic driven-

hydrothermal dolomitization

Multiple pore volumes - Hot meteoric recharge into Permian Basin
Partially dissolved Permian dolomite (Mg?* source): Precipitated
inclusion-rich dolomite (aqueous & hydrocarbon inclusions)

Once oil columns were swept to residual oil saturation to waterflood
(So,.,,): Precipitated inclusion-poor limpid dolomite

Dissolution - Altered rock fabric, enhanced porosity-permeability,
connectivity of strata, producibility of reservoirs & formed ROZ’s

Rio Grande Rift extension — Destroyed meteoric recharge area

Oil columns resaturated w/oil or gas, or did not resaturate & created
ROZ’s
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