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Abstract 

The Buda Limestone is a naturally fractured Upper Cretaceous carbonate formation in south Texas which unconformably underlies the Eagle 

Ford Shale. Matrix porosity of the Buda is less than 6%, therefore natural fractures improve the potential for commercial hydrocarbon 

production from this tight limestone formation. This presents a challenge for producers to identify these zones using well log and post-stack 3D 

seismic data typically available to medium or small exploration companies. This project provides a workflow based on well log analysis tied to 

seismic acoustic impedance (AI) inversion to locate areas of probable natural fractures.  

Acoustic impedance inversion was performed across a 40 square mile 3D seismic survey. The AI data shows low AI shadow zones on the 

down-thrown side of faults. Post-stack geometric seismic attributes such as coherence, maximum and minimum curvature were analyzed in the 

anomalous AI areas, along with physical seismic attributes such as instantaneous amplitude and instantaneous frequency. This study indicates 

that a combination of acoustic impedance inversion and seismic attributes can identify areas of enhanced natural fracturing within the Buda 

Limestone interval. 
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Interpretation and Fracture Characterization 

of Upper Cretaceous Buda Limestone 

Formation Using Post-Stack 3D Seismic 

Data in Zavala County, Texas 

By Andrey Smirnov and Dr. Christopher Liner 



• The Buda play is based on location of naturally fractured zones  
• This research proposes that naturally fractured zones can be identified by utilizing post stack attributes in combination with 

acoustic impedance inversion 
• Based on this research, naturally fractured zones tend to be associated with down-thrown sides of a fault 
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Presenter’s notes: 3D Study area in Zavala County, Texas with 3D seismic survey outline (68 sq. mi.). 
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Presenter’s notes: Late Albian stage of Early Cretaceous period just before the Buda Limestone was deposited (Wheat, 2014) 
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Presenter’s notes:  Comanche Shelf Depositional Architecture from the Hauterivian to Santonian Stages which primary developed large deposits of carbonates capped by thin 
successions of transgressive shales. (Workman, 2013). 
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From: Kilcoyne, 2018 



 
 

Presenter’s notes:  Fourier amplitude spectrum analysis showing min, max and dominant frequencies of Pedernales 3D survey over 2 second window centered on Buda limestone (- 
1050ms).  
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Presenter’s notes:  Synthetic seismogram displayed on seismic data showing a contact between Buda Limestone and Lower Eagle Ford represented by a strong peak and it’s lower 
contact with Del Rio, represented by a trough. Horizons corresponding to top and bottom of Buda Limestone were tracked and displayed in white color.  
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Presenter’s notes:  Buda limestone horizon time structure map with contours and well control. 
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Presenter’s notes:  Typical structural behavior of Buda which forms a “step” feature right below a fault in formations above. The “step” feature is expected to follow a pattern and 
move down as a footwall above moves down, however Buda is being displaced upwards instead.  
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Presenter’s notes:  Instantaneous amplitude calculated at the top of Buda limestone shows lower values (red colors) in areas of flexures and “step” features. 
 
  

Buda Limestone 
Instantaneous Buda Limestone 

Amplitude (middle) Variance 2x2 (middle) 

55 
- 0.10 

50 0.08 

45 0.06 
40 

t t 0.04 
35 

30 0.02 

lO,OOOft 1O,OOOft 
25 - 0 .00 

• Low values of Instantaneous Amplitude can be correlated to areas with "softer" lithology or enhanced porosity (Holman, 
2014) 

• Variance is an edge detection attribute capable of imaging discontinuities relating to faulting (Koson et ai, 2014) 

Buda Limestone 
Instantaneous Buda Limestone 

Amplitude (middle) Variance 2x2 (middle) 

55 
- 0.10 

50 0.08 

45 0.06 
40 

t t 0.04 
35 

30 0.02 

lO,OOOft 1O,OOOft 
25 - 0 .00 

• Low values of Instantaneous Amplitude can be correlated to areas with "softer" lithology or enhanced porosity (Holman, 
2014) 

• Variance is an edge detection attribute capable of imaging discontinuities relating to faulting (Koson et ai, 2014) 



 
 

Presenter’s notes:  Most positive short wavelength curvature extracted through the middle of Buda Limestone. Areas with higher curvature values suggest that the surface of Buda is 
forming an anticline shape at that particular point. 
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• Curvature measures the amount of surface deformation at a specific point, these observations can identify areas 
favorable to natural fracturing (Chopra and Marfurt, 2007). 

• Original seismic has been preconditioned using following filters: median filter, frequency filter, Gaussian filter. 
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Presenter’s notes:  Cross plot establishing linear relationship between sonic porosity and acoustic impedance at the Holdswoth-Nelson well by linear regression equation with R value of 
93%. Acoustic Impedance was calculated at the Holdsworth-Nelson well location using sonic and density logs. Both of these logs did not require correction at the Buda interval. In 
fractured carbonates, sonic porosity is an indicator of matrix porosity.  
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o In carbonates, Neutron porosity measures total porosity and 
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the Buda Interval (5189 MD - 5313 MD). 
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o B - Neutron porosity plotted against Acoustic Impedance (R2 
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o C - Sonic porosity plotted against Acoustic Impedance (R2 = 
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Presenter’s notes:  Initial Acoustic impedance model generated from low-frequency filtering of the Holdsworth-Nelson well. 
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Presenter’s notes:  Comparison between neutron, sonic and secondary porosity values in middle Buda Limestone (-7ms from the top).  
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Presenter’s notes:  Comparison between amplitude and variance in cross section at the fault “Y” location. A – Amplitude seismic, B – Variance attribute, C – Variance attribute time 
slice through middle Buda. 
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Presenter’s notes:  Comparison between amplitude and most positive curvature in cross section at the fault “Y” location. A – Amplitude seismic, B – most positive curvature attribute, C 
– most positive curvature attribute time slice through middle Buda. 
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Presenter’s notes:  Maximum volumetric curvature at the fault location. The fault in upper formations changes curvature values from negative to positive suggesting that downthrown 
side is to the North, while lower fault penetrating Buda limestone has curvature values that change from positive to negative suggesting downthrown side to the south.  
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Presenter’s notes:  Cross sectional view of acoustic impedance (top) and secondary porosity (bottom) with turned off interpolation at the fault “X” location. Decrease in acoustic 
impedance on the downthrown side of the block is correlated with increased secondary porosity at the same spot. 
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Presenter’s notes:  Secondary porosity overlaid with maximum curvature demonstrating relationship between faulting and increased secondary porosity values on downthrown side of 
the block. 
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