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Abstract 
 
Fluid flow and diagenesis in fine-grained reservoirs remains enigmatic. We studied the diagenetic history of lower Leonardian, toe-of-slope 
strata in the eastern Midland Basin (Howard County, Texas) composed of pelagic components, fine-grained clastics, and carbonate sediment 
gravity flow deposits (high and low density). These carbonates host highly variable macroporosity (1 to 15%) and distribution of diagenetic 
phases has impacted porosity location. The paragenesis includes: early dissolution; early and late calcite cement; early and late dolomite 
cement; displacive anhydrite; mechanical and chemical compaction; petroleum migration; late silicification; pyrite; episodes of fracturing; 
bitumen; and late dissolution. Extant porosity is the result of preserved primary porosity (dominantly intraparticle) and secondary porosity 
(vuggy, moldic, and fracture). Analysis of primary, aqueous, two-phase fluid inclusions within calcite cement in an opening-mode vein indicate 
initial precipitation from an ambient burial temperature, locally sourced fluid (mean Th = 78.3 °C). High salinity (mean Tmice = -20.5 °C) 
suggests that deep burial ambient water in the reservoir was evaporated seawater delivered through reflux in the Late Permian (e.g. Stueber et 
al. 1998). In contrast, later calcite precipitated from an anomalously hot, deeply sourced, hydrothermal fluid (mean Th = 154.1 °C). There are 
two plausible sources for these anomalously hot fluids: (1) faults cutting kilometers into and injecting fluids from underlying basement; or (2) 
the deep Val Verde Basin to the south where a meteoric pressure head in the elevated Marathon Mountains could have driven migration of hot 
fluids through a permeable unit north into the Midland Basin. The transition from locally derived fluids to hydrothermal fluids may represent 
progression from a relatively closed to open diagenetic system. This finding of a hydrothermal system has important exploration implications, 
as thermal maturation and porosity-altering diagenetic events may be localized near certain fracture systems. 
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Key Findings

• Tectonic fracturing opened the diagenetic system and 
triggered injection of exceptionally hot fluids into the 
Wolfcamp A

• These hot fluids may have enhanced source rock maturation 
& may be a key reason for the success of this play

• Extant macroporosity includes primary fusulinid intraparticle 
and fracture, as well as late moldic that developed 
contemporaneously with oil migration

• Other late dissolution, however, may have resulted in net 
porosity loss by enhancing chemical compaction
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Modern-day Hydrology

(ppm)Engle et al (2016)

• Fluids in Wolfcamp A-aged 
reservoirs are interpreted as 
brines derived from reflux of 
Late Permian evaporated 
seawater



Burial History
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Paragenesis

Diagenetic Events
1.     Original Deposition

2-4.  Dissolution

5. Vein opening
2-4.  Pyrite Framboids

6.     Calcite cement 2

8.     Calcite cement 3

18.   Fracturing

20-21.   Oil migration

24-25.   Bladed mineral

22.   Calcite cement 7

23.   Baroque dolomite 2

24-25.   Pyrite

20-21. Dissolution
19.   Baroque dolomite 1

17.   Megaquartz

14.   Calcite cement 5
15.   Fracturing

12.   Calcite cement 4

Burial StageEarly Fracturing Oil Migration

2-4.  Micritization (calcite cement 1)

11.    Fracturing

13.   Compaction, brecciation

7. Anhydrite

10.   Stylolitization & Chemical Compaction
9.     Silicification

16.   Calcite cement 6
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Tectonic Fracturing Stage

• After onset of chemical compaction
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• These are anomalously fluids!
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• 229,000 – 254,000 ppm
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Late Quartz • Later in tectonic fracturing stage
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Heat from igneous intrusions and convection?

High Temperature Fluid Source?

Tectonically valved deep basement fluids?
Top basement (max burial): 125 °C

Long distance advective migration from Val Verde 
Basin?
Modern deepest top basement is 8km deep: 250 °C



Thermal Maturation

• Hydrothermal fluids likely enhanced thermal 
maturation

• Likely deep fluid source suggest fractures were 
pathway for upward migration

• Therefore, knowledge of basin fracture systems 
should improve predictability of source rock 
maturity

• Fracture width, type, or timing are likely controls on 
localized thermal maturity



Faults

Fracture control?



Late Dissolution &
Oil Migration

• Yields porosity enhancement 
AND reduction

0.5 mm

bryozoan mold?
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• Bitumen present in extant 
porosity



Where is success?
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