
PS
Using Second-Order Adjoint State Methods in GPUS to Quantify Resolution on Full Waveform Inversions*

Sergio Abreo
1
, Ana Ramirez

1
, and Oscar Mauricio Reyes Torres

1

Search and Discovery Article #42034 (2017)**
Posted March 13, 2017

*Adapted from poster presentation given at AAPG International Conference & Exhibition, Barcelona Spain, 2016

**Datapages © 2017 Serial rights given by author. For all other rights contact author directly.

1Universidad Industrial de Santander, Santander, Colombia (abreosergio@gmail.com)

Abstract

The Hessian matrix in Full Waveform Inversion (FWI) allows quantifying resolution of the velocity model obtained. Although there are

different ways to compute approximations of the Hessian matrix, such as BFGS, Newton, Gauss-Newton and Levenberg-Marquardt, our

interest is to obtain the exact Hessian matrix. Particularly, we use the Second Order Adjoint State Method (SOASM) to obtain the Hessian

matrix-vector products. This work makes use of Graphical Processing Units (GPUs) giving the inherent parallelism of the algorithm. In order to

obtain the Hessian matrix-Vector products, it is necessary to perform four wave propagations using a finite differences scheme in time. In such

scheme, the next layer is computed using information from the current layer and the previous layer. Furthermore, every spatial point of the next

layer can be computed independently. In this work, this independence is exploited by an architecture with a high degree of parallelism such as

the GPU. This work presents detailed interpretation and implementation of the SOASM theory to take advantage of GPU's architectures.

We use a section of the Marmousi velocity model in all the tests. Specifically, the size of the section is 5.25 km x 1.7 km (a grid of 210 x 68

points and spatial resolution of 25 m), which produces a Hessian matrix of 14280x14280 points. We compare the performance of two

implementations: Intel Core I7, and Geforce GTX 860M. The CPU and GPU implementations compute a column of the Hessian matrix in

28.04 and 0.05956 seconds, respectively. It means a speedup factor of 470x by using the GPU. In our experiment, it is necessary to compute

14280 columns to obtain the complete Hessian matrix for one shot and one iteration. Assuming a linear performance of both implementations

and extrapolating the measured times, we find a lower bound for both implementations using five shots per iteration. For the CPU

implementation, the lower bound is 23.17 days whereas the GPU implementation has a lower bound of 1.18 hours.

mailto:abreosergio@gmail.com

Using second-order adjoint state method in GPUs
to quantify resolution on Full Waveform Inversions

Sergio A. Abreo Ana B. Ramı́rez Oscar Reyes
Universidad Industrial de Santander, Bucaramanga, Colombia.

�
���������	�
��

��

Contact us: abreosergio@gmail.com www.uis.edu.co

Introduction

The Hessian matrix in Full Waveform Inversion (FWI) allows
quantifying resolution of the estimated parameters. We study
the computation of exact Hessian matrix, using the Second
Order Adjoint State Method (SOASM) presented by Fichtner
(2010) and Métivier et al. (2012). The SOASM method obtains
the Hessian matrix-vector products separately, and therefore the
method is highly parallelable. In this work, we propose a paral-
lel implementation of the SOASM method using Graphical Pro-
cessing Units (GPUs) to compute a full Hessian matrix of 7182
columns. We compare the resulting execution time of our imple-
mentation using GPUs, with the execution times required by a
CPU implementation.

Synthetic model

The synthetic velocity model used to obtain the observed data
(dobs) is presented in Figure 1.a, with 211 points horizontally, 68
points in depth and a grid space in both dimensions of 25 m
(Δx = Δz = Δh = 25 m). The background velocity is 2000 m/s
and a diffracting area has a velocity of 2500 m/s. The diffracting
element is a square with an area of 225 × 225 m2 centered at
the position x = 2650 m and z = 850 m.

Distance (km)

D
e

p
th

 (
k
m

)

Original velocity model

0 1 2 3 4 5

0

0.5

1

1.5
2000

2100

2200

2300

2400

2500

(a) Original.

Distance (km)

D
e
p
th

 (
k
m

)

Starting velocity model

0 1 2 3 4 5

0

0.5

1

1.5
2000

2100

2200

2300

2400

2500

(b) Initial.

Figure : 1. Velocity models.

The modeled data (dsyn = R(ũ)) is obtained from applying the
first step of the SOASM’s algorithm over the velocity model pre-
sented in Figure 1.b. The starting velocity model has the same
dimensions, grid space and background velocity as the original
velocity model, but it lacks the diffracting area.
The observed and modeled data were produced using one
source located at (x = 2650 m, z = 125 m). The receivers
were placed every 25 m, at the same depth (125 m), starting
from the position 525 m up to the position 4775 m, having a to-
tal of 171 receivers. Each receiver records 3.5 s at 250 Sa/s
(Δt = 4× 10−3 s). The source is a Ricker wavelet with a central
frequency of 3 Hz.
The non-natural boundaries in both velocity models (left, right
and down of the red square) are modeled using Convolutional
Perfectly Matched Layer (CPML), proposed by Pasalic et al.
(2010), and explained in detail in Abreo et al. (2015). The CPML
parameters of this implementation are CPMLarea = 20 (grid
points), Lx = 500 m, R = 10−15 and Vmax = 4622 m/s; where
Vmax is obtained from the Courant’s stability criterion.

SOASM’s algorithm
Require: Compute L(u,m) = f . � f = src(x , z) = Normal source.
1: 1

v2(x ,z)
∂2ũ
∂t2 = ∂2ũ

∂x2 +
∂2ũ
∂z2 + src(x , z) � ũ(x , z, 0) = 0; ∂ũ

∂t (x , z, 0) = 0

Require: Compute ∂(L(u,m)−f)
∂m

2: −2
v3(x ,z)

∂2ũ
∂t2

Require: Compute L(λ,m)† = −R†(R(ũ)− dobs) � −R† =flip up to down
the array.

3: 1
v2(x ,z)

∂2λ̃
∂t2 = ∂2λ̃

∂x2 +
∂2λ̃
∂z2 + flipud(dsyn − dobs) � λ̃(x , z,T) = 0; ∂λ̃

∂t (x , z,T) = 0

Require: Compute ∂(L(λ,m)† + R†(R(ũ)−dobs))
∂m

4: −2
v3(x ,z)

∂2λ̃
∂t2

Require: Compute Φw = −∑k
j=1 wj

∂(L(u,m)−f)
∂m � wj = Perturbation mask.

5: Φw = −∑Nx ·Nz
j=1 wj(− 2

v3(x ,z)
∂2ũ
∂t2)

Require: Compute L(α̃,m) = Φw � α̃(x , z, 0) = 0; ∂α̃
∂t (x , z, 0) = 0

6: 1
v2(x ,z)

∂2α̃
∂t2 = ∂2α̃

∂x2 +
∂2α̃
∂z2 −

∑Nx ·Nz
j=1 wj(− 2

v3(x ,z)
∂2ũ
∂t2)

Require: Compute ∂(L(α̃,m)−Φw)
∂m

7: −2
v3(x ,z)

∂2α̃
∂t2 +

∑Nx ·Nz
j=1 wj(

6
v4(x ,z)

∂2ũ
∂t2)

Require: Compute L(μ̃,m) = −∑Nx ·Nz
j=1 wj(− 2

v3(x ,z)
∂2λ̃
∂t2)− R†Rα̃ � Rα̃ =

Seismic traces of step 6.
8: 1

v2(x ,z)
∂2μ̃
∂t2 = ∂2μ̃

∂x2 +
∂2μ̃
∂z2 −

∑Nx ·Nz
j=1 wj(− 2

v3(x ,z)
∂2λ̃
∂t2)− R†Rα̃ � Final conditions

μ̃(x , z,T) = 0; ∂μ̃
∂t (x , z,T) = 0.

Require: Compute ∂2(L(u,m)−f)
∂m2

9: 6
v4(x ,z)

∂2ũ
∂t2

Require: H(m)wi = < μ̃, ∂(L(u,m)−f)
∂m > + < λ̃, ∂(L(α̃,m)−Φw)

∂m >

+
∑Nx ·Nz

j=1 wj < λ̃, ∂
2(L(u,m)−f)

∂m2 > � < · · · , · · · >=
∫ T

0
inner-product(· · · , · · ·)dt .

10: H(m)wi =< Step 8,Step 2 > + < Step 3,Step 7 > +
∑Nx ·Nz

j=1 wj <

Step 3,Step 9 >

Results

(a) Theoretical. Source •, perturbation � and receiver �

Distance (km)

D
is

ta
n

c
e

 (
k
m

)

Kernel 1

1 1.5 2 2.5 3 3.5 4 4.5

0.2

0.4

0.6

0.8

1 −1

0

1

2

x 10
−7

(b) Computed.

Figure : 2. First kernel. < Step 8,Step 2 >

(a) Theoretical. Source •, perturbation � and receiver �

Distance (km)

D
is

ta
n

c
e

 (
k
m

)

Kernel 2

1 1.5 2 2.5 3 3.5 4 4.5

0.2

0.4

0.6

0.8

1 −1

0

1

2

x 10
−7

(b) Computed.

Figure : 3. Second kernel. < Step 3,Step 7 >

(a) Theoretical. Source •, perturbation � and receiver �

Distance (km)

D
is

ta
n

c
e

 (
k
m

)

Kernel 3

1 1.5 2 2.5 3 3.5 4 4.5

0.2

0.4

0.6

0.8

1 −1

0

1

2

x 10
−7

(b) Computed.

Figure : 4. Third kernel.
∑Nx ·Nz

j=1 wj < Step 3,Step 9 >

(a) Theoretical. Source •, perturbation � and receiver �

Distance (km)

D
is

ta
n

c
e

 (
k
m

)

Kernel 123

1 1.5 2 2.5 3 3.5 4 4.5

0.2

0.4

0.6

0.8

1 −1

0

1

2

x 10
−7

(b) Computed.

Figure : 5. Column of the Hessian matrix. H(m)wi

Hardware and Results

The technical specifications of the CPU, and the GPU ar-
chitectures are given in Tables 1, and 2.

CPU architecture Details
Processor Intel(R) Xeon(R) CPU E5-2609 v2
Frequency 2.5 GHz
CPU cores per socket 4
Sockets 2
L3 Cache size 10240 kB
RAM speed 1333 MHz
RAM size 256 GiB

Table : 1. Intel(R) Xeon(R) CPU E5-2609 v2.

Item Tesla K40c
Stream Multiprocessors.(SMs) 15
Cuda cores per SMs 192
Number of Cuda Cores 2880
Blocks per SM 2
Threads per Block (Max.) 1024
Registers per Block (Max.) 65536
Global memory 12GB
L2 cache size 1572864 bytes
Shared memory per block 49152 bytes
Clk frequency 745MHz

Table : 2. Nvidia Tesla K40c architecture.

We obtain a speedup factor of 79x when our implementa-
tion is compared with a serial Ansi-C CPU implementation.
Table 3 shows the execution time required by each archi-
tecture.

Architecture Language Performance (s)
Intel(R) Xeon(R) CPU E5-2609 v2 ANSI-C 14,78
Tesla K40c CUDA-C 0.187155

Table : 3. Execution times of SOASM.

Conclusions

We conclude that current high-performance computing
technologies make feasible to obtain the exact Hessian
matrix using an FDTD implementation of the SOASM.
Computing Hessian matrices are of interest in the Geo-
physics community to know the resolution of estimated ve-
locity models, and it may be used for uncertainty quantifi-
cation on parameters estimated from Full Waveform Inver-
sions

Acknowledgements

This work is supported by Colombian Oil Company
ECOPETROL and COLCIENCIAS as a part of the re-
search project grant 0266 of 2013, and agrement 004 of
2014. The authors gratefully acknowledge the support of
CPS research group of Industrial University of Santander
and Colombian Petroleum Institute, ICP.

References
Abreo, S., A. Ramirez, O. Reyes, D. Abreo, and H. Gonzalez, 2015, A practical implementation of acoustic full
waveform inversion on graphical processing units: CT&F - Ciencia, Tecnologı́a y Futuro, 5–19.

Fichtner, A., 2010, Full seismic waveform modelling and inversion: Springer Science & Business Media.
Métivier, L., R. Brossier, S. Operto, J. Virieux, et al., 2012, Second-order adjoint state methods for full wave-
form inversion: Presented at the EAGE 2012-74th European Association of Geoscientists and Engineers
Conference and Exhibition.

Pasalic, D., R. McGarry, et al., 2010, Convolutional perfectly matched layer for isotropic and anisotropic acous-
tic wave equations: Presented at the 2010 SEG Annual Meeting, Society of Exploration Geophysicists.

