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Abstract 

 

The popular hypothesis for secondary migration of petroleum as a continuous separate phase flow has many problems. To 

circumvent these, I proposed (Stainforth, 2012) that secondary migration of petroleum mainly occurs as colloidal clusters in 

water in the metastable region between true solution and continuous separate phases. The governing law is Stokes’ rather than 

Darcy’s, and the controlling viscosity is that of the pore water rather than the petroleum. As a result, the mechanism works 

equally well for all petroleum mixtures from the heaviest to the lightest and is generally much faster than Darcy flow of a 

separate phase. So long as the clusters are smaller than the pore throat size, there is no capillary resistance. At any one time, the 

volume fraction of petroleum in the pore water in the secondary migration pathways is very small (0.001 or less), and the losses 

of petroleum are negligible. Another enormous advantage of the mechanism is its ability to self-adjust the flux rates over at least 

six orders of magnitude, which is required by the focusing of flow in secondary migration systems.  

 

In this paper, I combine drainage area analysis with fractal stream laws to compute petroleum mass fluxes in different parts of a 

secondary migration system. This allows the sizes of the petroleum clusters, and thus the minimum pore throat sizes in the 

carrier beds, to be computed. These pore throats sizes are translated into Darcy permeabilities for reference purposes, even 

though the controlling flow law is not Darcy. The mechanism points to the lithological and diagenetic limits for adequate carrier 

beds in secondary migration systems.  
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INTRODUCTION 

 Problems with the industry-favored hypothesis: 

 Continuous phase or 2-phase Darcy flow with capillary entry pressures 

 Conceptual model of proposed alternative hypothesis 

 Tracing petroleum molecules from source to trap 

 Preliminary numerical model 

 Not very precise but “roughly right rather than precisely wrong” 

 Certainly good within an order-of-magnitude 

 Shows the strength of the hypothesis 

 



CURIOUS FEATURES OF SECONDARY MIGRATION 

 Petroleum “shows” in carrier beds are very minor 
 Only ubiquitous HCs are those in pore water in true or colloidal solution 

 Works well with a wide range of carrier properties 
 Carrier beds either “work” or “not work”, as long as ~ 1mD or better 

 Works well for all petroleum types 
 Gas, oil, light, heavy, low and high viscosity 

 Secondary migration is very efficient… 

 … and not (usually) the rate-limiting step of migration 
 That is petroleum generation & primary migration in the source rock 

 Petroleum systems are driven by very low expulsion flux rates 
 Peak rates ~ 100 kg/m2/My ~ 0.1 m3/m2/My ~ 1 nm/day 

 3D focusing of flow is very significant 
 Lateral focusing into anticlines and structural noses 

 Secondary migration fluxes are highly variable 
 Focussing must increase fluxes by orders of magnitude 

 T & P vary very gradually 
 ~ 1 nC/day & ~ 10 nbar/day: extremely well controlled “lab” 

 



FOCUSING INTO ANTICLINAL NOSES WITH 

ENORMOUS INCREASE IN FLUXES 
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 STAGE I: vertical cross-stratal migration 

 Across carrier bed to top seal (only for expulsion): v slow 

 STAGE II: lateral drainage beneath a top-seal 

 Over entire area with active SR’s 

 Focusing into rivulets and streams 

 STAGE III: highly focused lateral flow in “streams” & ”rivers” 

 Focusing into 1 or 2 major “rivers” 

 Analogous to (1) rainfall, (2) run-off, & (3) stream flow in hydrology 
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FOCUSING  WIDE RANGE OF MIGRATION FLUXES 

I 
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SECONDARY MIGRATION IS DRIVEN BY GRAVITY:  

BUT WHICH FORCES DOMINATE? 

g = gravity  

kbT = thermal 

w = viscosity of 

water  

g 

kbT 

w 

𝒑 

𝐾𝒑
 

 

Popular hypotheses 

(Darcy flow, percolation) 
Proposed mechanism 

p = viscosity of 

petroleum 

 = cap entry p  

Kp = permeability of rock 

to petroleum 

…utterly different 

 Popular hypotheses: capillary pressures are dominant 
 BUT cap pressures, petroleum viscosity and rock permeability are all avoidable! 

 Proposed hypothesis built around unavoidable forces 
 Gravity (PE) in precise balance with viscous drag of water and with thermal energy 
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PROBLEMS WITH DARCY FLOW MECHANISM FOR 

SECONDARY MIGRATION 

 How can different petroleum types migrate with similar ease with Darcy 
flow? 
 Petroleum viscosities vary by 5 orders 

 Petroleum viscosity generally >> water viscosity 

 

 
 

 

 

 

 

 

 

 

 

 

 

 Why don’t we see influence of carrier bed permeability 
 Carrier bed permeability k varies by > 6 orders! 

 SM should be v sluggish(!) for viscous petroleum, particularly in poor carriers 

 Yet SM works equally well for all petroleum and carrier bed types 
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PROBLEMS WITH DARCY FLOW MECHANISM FOR 

SECONDARY MIGRATION 

 How can Darcy flow rates increase by orders of magnitude to cope with 
focussing of flow? 
 Darcy fluxes ~ fixed by the petroleum viscosities & rock permeabilities 

  Darcy flow rates can only be increased by increasing the X-sectional area of the 
flow, i.e., by increasing the thickness of the migrating petroleum slugs 

 

 Why do we never see petroleum stringers or slugs?  
 Requires buoyancy > capillary entry pressures 

 Continuous phase petroleum waiting to take off – NEVER seen! 

 

 

 



MIGRATION OF PETROLEUM IN COLLOIDAL 

DISPERSIONS (EMULSIONS) OF  MICRODROPLETS 

 Emulsions: microdroplets of petroleum in water 
 

 Parks (1924) microdroplets 

 Meinschein (1959): droplets or emulsions 

 Baker (1962): two sizes of micelles ~ 6 and 500 nm 

 Welte (1965): “colloidally dispersed; later…emulsion-like form” 

 Peake and Hodgson (1966, 1967) colloidal “accommodations” of n-alkanes in water 
~ 3 to 4 orders > true solubilities 

 

 Today’s hypothesis more specific and detailed 

  
 migration of petroleum molecules in “clusters”/“microdroplets” 

 roughly spherical ~ 10 nm 10 m in diameter 

 Many new aspects 

 

microdroplet 

Diameter 10’s nm  10’s m 



SECONDARY MIGRATION THOUGHT EXPERIMENT:  

INITIAL “GESTATION” PERIOD 

 Initially petroleum expulsion fluxes are extremely 

low << 1 kg/m2/my 

 

 Initially petroleum passes directly into water solution 

at 10-6  10-5 part per volume or mass 

  NO continuous phase ever forms 

 

 Transient “gestation” period 

• At first, diffusive flux faster than expulsion flux  

• But after a short gestation period (~ 100 y), diffusion 

can not keep up with expulsion flux 
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STOKESIAN  RISE OF METASTABLE CLUSTERS OF 

MOLECULES OR MICRODROPLETS 

 Pore-water becomes saturated/supersaturated with 
petroleum 

• Causes petroleum molecules to exsolve… 

• ... & form meta-stable clusters/microdroplets ~ 1 - 100 nm 

 

 Buoyant rise of clusters 

• buoyancy balanced by viscous drag  

 
 

 

• inertia is negligible cf viscosity (Re < 10-6) 

 Stokesian velocity 

  radius r2 or diameter d2, i.e. strong size dependence 

  1/viscosity of water  (w) not petroleum 

 Does not depend on rock permeability 

 No capillary entry pressure if droplet size < pore throat 
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SECONDARY MIGRATION - STAGE I: X-STRATAL MIGRATION 

of CLUSTERS/MICRODROPLETS 

 Cluster sizes  supersaturation of  petroleum in water 

 If petroleum influx > efflux anywhere in migration pathways 

supersaturation increases… 

… microdroplets to increase in size… 

… increase in vertical speed 

 until petroleum fluxes are balancec 

  and v.v. 

 

 Flow rate of clusters/microdroplets is self-adjusting 

 Mass flow rate is balanced everywhere in the secondary 
migration system …  

 … to match the rates of petroleum expulsion integrated over 
the whole SR kitchen area 
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LATERAL MIGRATION OF MICRODROPLETS 

BENEATH DIPPING TOP SEAL 
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 Preferential lateral pathways 

 Microdroplet size relates to porethroat size  

 Flow is heterogeneous and anisotropic 

 Faster laterally than vertically  

 Trapping 

 No lateral flux 

 droplets coalesce  

 Buoyancy > cap pressures etc 

 



STEADY STATE PETROLEUM MIGRATION RATE (kg/y) 

INCREASING MIGRATION FLUXES (kg/m2/y) 

 Equilibrium between vertical & lateral fluxes  

 Fluxes increase orders of magnitude during lateral migration 

Bidisperse colloid: 

~ 10 nm clusters + 

~ 1- 20 m microdroplets 

Stage I 

Stage II 

Stage III 

102 kg/m2/My 

1010 kg/My 
V weak Darcian flux of water 

+ Stokesian flux of clusters 

weak Darcian flux of water 

+ weak Stokesian flux of clusters 

+ strong Stokesian flux of droplets 



SIMPLE NUMERICAL MODEL 

 Input parameters: first case 

 Drainage area: 100 km2, hemispherical geometry, top seal dips < 6 to 0  

 Carrier beds:  

• thickness 10 m (for X-stratal migration) 

• Choose permeabilities from D  10’s mD 

• Aspect ratio of pores (pore size/throat size) ~ 5  10 

• Minimum pore throat size = 1.5 x microdroplet size  

• ~ 1 microdroplet/pore at any one time  vol/vol petroleum in pores ~  10-5  10-3 

 Burial rate: 100 m/My, heat flow 50 mW/m2 

 Source rock: SPI 10 tonne HC/m2  ~ 3 109 bbl over 30 My 

• peak expulsion flux ~ 60 kg/m2/My, API 35, GOR ~ 0.1,  
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DROPLET SIZES & THICKNESS OF THE ZONE OF LATERAL 

MIGRATION TOP SEAL 

 Input 

 Permeabilities e.g. 1, 10, 20, 30 mD 

 Output 

 Microdroplet size: ~ 200 nm for X-stratal migration, 2  10 m for lateral migration 

 Thickness of migration zone to keep up with expulsion fluxes: 10’s cm  0.5 m 

 

Vertical X-stratal 
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MIGRATION VELOCITIES: STOKESIAN VS DARCY FLOW 

Vertical X-stratal 

 Migration velocities  

 Stokesian velocities of microdroplets 

are ~ 3  5 orders faster than Darcy 

velocities of slugs 

 

 Because of  

 Lack of hindrance by rock grains 

 Stokesian drag is caused by the (low) 

viscosity of water  

 Cf Darcy drag is caused by much 

higher viscosity of petroleum 

 

 

 



TOTAL MIGRATION TIMES: STOKESIAN VS DARCY FLOW 

 Stokesian droplet flow  

 X-stratal migration ~ 200 y 

 Total migration ~ 4000 y 

 Darcy slug flow 

 X-stratal migration ~ 10 My 

 Total migration ~ 15 My 

 Duration of main phase 

petroleum generation~ 30 My 

 Darcy much slower 

 V slow for X-stratal migration  

 Even with this 35 API gravity 

oil with moderate viscosity 

 Hopeless with heavy viscous 

oil: 100’s My! 

 
 

Vertical X-stratal 
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MICRODROPLET SIZES FOR GIVEN PERMEABILITIES 

OF CARRIER BEDS (MULTIPLE CASES) 

 Vary all input parameters 

 Carrier bed permeabilities 

 Drainage area size, shape 

 SR type & quality  

 Oil from 15  60 API gravity 

 Viscosities 0.1  100 cP 

 GOR 0.01  10 kg/kg 

 

 Predicted droplet sizes 

 X-stratal mig ~ 10’s  100’s nm 

 Lateral mig  ~ 100’s nm  10’s m 
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AND THICKNESSES OF LATERAL MIGRATION ZONE 

BENEATH TOP SEAL (MULTIPLE CASES) 

 Output 

 Droplet diameters 1  10 m,  

 Thickness of lateral migration zone < 1m ( mainly cm’s   10’s  cm) 
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MIGRATION VELOCITIES: STOKESIAN VS DARCY MODELS 

 Stokesian velocity of microdroplets 2 to 5 orders > Darcy slugs 

 cm/yr  100’s m/y 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Proposed mechanism is highly effective & plausible 
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PRINCIPLES OF LEAST ENERGY DISSIPATION & 

MAXIMUM RATE OF HEAT DISSIPATION 

 Principle of least energy dissipation 

 Viscous dissipation (heat) =  

 Creeping Stokesian flow is a minimum dissipation flow 

 Equations for dissipation are v complicated, but total dissipation equals… 

….PE lost in migrating petroleum of mass m, density contrast , through height h 

 

 

 No particular size of droplet is favored wrt dissipation 

 Principle of maximum rate of energy dissipation (entropy production) 

 Rate of energy dissipation 𝑑𝐸/𝑑t = drag force x velocity 

 

 

 This is also equal to buoyant force x velocity, which = rate of loss of PE 

 

 

 Analogous to electrical power dissipation = VI = RI2 

 Highest possible flow rates (low viscosity of water)  maximum 𝑑𝐸/𝑑t 
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IMPLICATIONS 

 Secondary migration of petroleum occurs mainly in microdroplets 
 as a colloidal dispersion/emulsion of petroleum droplets in pore water 

 Dispersion/emulsion is dynamically metastable 
 NO emulsifiers required 

 Droplet sizes in equilibrium with petroleum fluxes & expulsion rates   

 The velocities of microdroplets are self-adjusting  
 Focusing of secondary migration increases fluxes by ~ 6 orders 

 Achieved by changing droplet sizes ~ 3 orders 

 Generally much faster than Darcy flow of continuous phase “slugs” 

 Works similarly for all petroleum types regardless of their viscosity 
 Flow rates are controlled by the viscosity of water, which is low & ~ constant 

 NOT by the highly variable and greater viscosity of petroleum 

 Carrier beds either “work” or “not work”: cut-off is pore-size constraint 
 NO effect of permeability of carrier beds  

 NO capillary entry pressures 

 Volume fraction petroleum in migration pathways is low (<10-4 – 10-2) 
 Very little petroleum in pathways 

 Secondary migration by this mechanism is extremely efficient (> 99.99%)  

 Least energy dissipation & maximum rate of dissipation principles 
 All PE of migrating petroleum is dissipated as heat at maximum possible rate 
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