Pulsed Neutron Technology: Applications for Tight Gas Reservoirs*

Gustavo Valenzuela¹, Gustavo Potas¹, Nayibe Otalora¹, María Eugenia García¹, Germán Serrano¹, Camilo Mejía², and Alejandro Schiuma²

Search and Discovery Article #42004 (2017)**
Posted February 13, 2017

Abstract

As the oil and gas industry is moving forward with the optimization of costs, some reservoir challenges in tight gas reservoirs remain critical to increasing productivity. The evaluation of the gas-oil ratio is a key component of the reservoir modeling for field development. A new generation of pulsed-neutron technology enhances the cased-hole petrophysical applications. The technology design, advanced modeling, applications, and interpretation models are demonstrated in this case study.

^{*}Adapted from oral presentation given at Latin America & Caribbean Region Geoscience Technology Workshop, Buenos Aires, Argentina, November 16-18, 2016

^{**}Datapages © 2017 Serial rights given by author. For all other rights contact author directly.

¹YPF S.A., Buenos Aires, Argentina, South America

²Weatherford, Buenos Aires, Argentina, South America (ALEJANDRO.SCHIUMA@LA.Weatherford.com)

Pulsed Neutron Technology

Applications for Tight Gas Reservoirs

Authors: Gustavo Valenzuela, Gustavo Potas, Nayibe Otalora, María Eugenia García & Germán Serrano (YPF S.A.), Camilo Mejía & Alejandro Schiuma (Weatherford)

Neutrons

- What is a neutron?
 - Heavy particle without charge emitted from nucleus by fission or bombardment by external particles
 - No naturally occurring radioisotopes are direct neutron emitters
 - Mass about equal to proton
 - Highly penetrating

PNG

- What is a neutron generator?
 - Also called Deuterium-Tritium or D-T accelerators
 - Isotopes of hydrogen

Pulse Neutron – Basic Theory

- What is a neutron generator?
 - Deuterium is accelerated into the tritium
 - High-energy neutrons that travel at 52,000 km/sec, 17.3% speed of light
 - 100,000,000 neutrons/sec output

Neutron Energy vs. Time

Neutron Interactions

- Inelastic interactions
 - Fast and high energy
- Elastic interactions
 - Intermediate Energy
- Capture
 - Slow energy (thermalized)
- Activation events

Pulse Neutron - Visualization

- Neutron interactions
 - Neutron interacts basically with nuclei of atom

Inelastic Scattering

- High-energy neutrons >2MeV / >20.000 km/sec
- Nucleus gets excited
- Disturbed nucleus returns to normal state giving off a gamma ray
- Characteristic γ- ray from the isotope with energy between 2 to 7 MeV Yield ratio for C/O computation
- Neutron bounces off and loses energy
- Occurs only during the burst and sometimes a few µsec after.

Pulse Neutron - Visualization

- Neutron interactions
 - Neutron interacts basically with nuclei of atom

Absorption

- When capture occurs, a characteristic gamma ray of the element is emitted.
- The thermalization time is measured and is the base for the SIGMA computation
- CI-Chlorine is 100 times more efficient at capturing thermal neutron than any other element present on the wellbore.
- Occurs several hundreds of µsec after burst.

Inelastic vs. Capture Gamma Ray Window

Inelastic Spectrum of Common Formation Elements

- Identify common elements downhole
 - Silicone
 - Calcium
 - Carbon
 - Oxygen

Capture Spectrum of Common Formation Elements

- Identify common elements downhole
 - Calcium
 - Iron
 - Hydrogen

How do we detect interactions?

- Larger detector array
 - Senses more formation volume
- Detector type: LaBr₃(ce)
 - Fastest detector in the industry
 - High count rates, faster logging
 - Brightest detector type more signal, less noise
 - Full spectroscopic capability

Why Four Detectors?

Why Four Detectors?

How do we use these interactions?

Case Studies

Geologic Considerations

- Thorough understanding of the geologic characteristics of the formation:
 - The structural and tectonic regime
 - The regional thermal gradients
 - The regional pressure gradients
- Stratigraphy in a basin can affect:
 - Drilling
 - Evaluation
 - Completion
 - Stimulation
- Important geologic parameters:
 - Depositional system
 - Genetic facies
 - Textural maturity
 - Mineralogy
 - Diagenetic processes
 - Cements
 - Reservoir dimensions
 - Presence of natural fractures

Evaluations in the Neuquén Basin

Track 1: Caliper, Vclay, GR, OH PHIE (blue) & Cased Hole PHIE (red). Track 2: perforations. Track 3: Saturation Envelope. Track 4: Openhole Sw (Blue), Cased-hole saturation (Red). Track 5: Volumetrics.

Pay zone evaluated by open hole and cased-hole data.

Zone 1: cased-hole PHIE pessimistic compared to openhole, PN tool is not seeing any Gas.

Zone 2: there is a match between openhole and cased-hole PHIE; also saturations are similar.

Evaluations in the Neuquén Basin

Track 1: Caliper, Vclay, GR, OH PHIE (blue) & Cased Hole PHIE (red). Track 2: perforations. Track 3: Saturation Envelope. Track 4: Openhole Sw (Blue), Cased-hole saturation (Red). Track 5: Volumetrics.

Pay zone evaluated by openhole and cased-hole data.

Zone 1: There is a match between cased-hole and openhole PHIE; saturations are close.

Zone 2: Cased-hole PHIE is more optimistic; therefore, saturation is also optimistic compared to that of the open hole.

Evaluations in the Neuquén Basin

Track 1: Caliper, Vclay, GR, openhole PHIE (blue) and cased-hole PHIE (red). Track 3: Saturation envelope. Track 4: Openhole Sw (Blue), cased-hole saturation (Red). Track 5: Volumetrics.

Pay zone evaluated by openhole and cased-hole data. There is a general miss match between openhole and cased-hole PHIE in shaly zones. This difference can be explained by clay-bound water effect in openhole data, generating an optimistic calculation in PHIE. Pulsed neutron tool seems to be unaffected by this matter when calculating PHIE.

Zone 1: Cased-hole PHIE optimistic compared to openhole PHIE, PN tool sees more gas.

Zone 2: There is a better match between openhole and cased-hole PHIE; also saturations are close.

Other Applications

Cased-hole PHIE vs. Openhole PHIE

Openhole data vs. cased-hole data. In tracks 5, 6 & 7 PHIE, Vshale, and NPHI compared to **XPORT** (gas-corrected PHI), **VClay** from inelastic/capture ratio and **CPORC** (characterized neutron porosity). Differences between cased-hole and openhole PHIE are explained by the differences on VClay estimations.

Other Applications

Field Petrophysical Model
Porosity **VClay**

Once curves are normalized with openhole data, petrophysical model can be propagated to other wells in the field without openhole information.

Other Applications

3-Phase identification

Carbonate reservoir where gas cap was developed in an oil reservoir. Contact was identified allowing client to adjust production strategy.

Conclusion

Data integration is fundamental for tight gas evaluations.

Five-detector tool has the most comprehensive detector array in the industry, with four spectroscopy detectors and one fast neutron detector. This array probes the neutron-gamma transport field over a larger volume than any other tool in the industry and as a consequence has more sensitivity than any other tool for Tight Gas reservoirs. This technology differentiator and the data interpretation method developed by Weatherford provide a significant input during the reservoir performance evaluation.

Acknowledgment

Special thanks to YPF S.A. staff who supported this presentation and provided material to present this job.

THANKS!

QUESTIONS?