Rock Compressive Strength: A Correlation from Formation Evaluation Data for the Niger Delta*

Babatunde A. Salawu¹, Reza Sanaee², and Olumayowa Onabanjo³

Search and Discovery Article #30488 (2017)** Posted February 20, 2017

*Adapted from oral presentation given at AAPG/SPE 2016 Africa Energy and Technology Conference, Nairobi City, Kenya, December 5-7, 2016 **Datapages © 2017 Serial rights given by author. For all other rights contact author directly.

¹Well Engineering, Shell Petroleum Development Company, Port Harcourt, Rivers, Nigeria (<u>babatunde.salawu@shell.com</u>) ²Robert Gordon University, Aberdeen, UK ³Well Engineering, Shell Petroleum Development Company, Port Harcourt, Rivers, Nigeria

Abstract

The purpose of this paper is to study the strength of rocks by determining their Unconfined Compressive Strength (UCS), correlate the determined strength to physical properties of rocks that can be measured from formation evaluation data and derive an equation that can be used to derive rock strength from formation evaluation measurements. The scope of this work is limited to the Niger Delta basin from which core samples were taken. The method used for this research was to collect data of existing core samples at different depths and in various fields in the Niger Delta, then determine the strength of each sample by unconfined compressive tests. The derived strength was then analyzed with corresponding formation evaluation data utilizing regression analysis. Then, comparisons were drawn between the correlations derived and other existing correlations in the industry to check whether any of the existing correlations fits the Niger Delta region. The result is a model that takes formation evaluation data (Slowness, Young's Modulus, and Poisson's ratio) as input in order to provide rock compressive strength for the Niger Delta region. It was also observed that correlations built for other regions of the world do not yield accurate results when used for the Niger Delta region due to factors such as formation characteristics type of regression method, various sample collection conditions and so on.

Selected References

Adeoti, L., A.A. Ojo, O.B. Olatinsu, O.O. Fasakin, and O.Y. Adesanya, 2015 Comparative Analysis of Hydrocarbon Potential in Shaly Sand Reservoirs Using Archie and Simandoux Models: A Case Study of "X" Field, Niger Delta, Nigeria: Ife Journal of Science, v. 17/1, p. 015-029.

Amani, A. and K. Shahbazi, 2013, Prediction of Rock Strength Using Drilling Data and Sonic Logs: International Journal of Computer Applications, v. 81/2. p. 5-10.

Avbovbo, A.A., 1978, Tertiary Lithostratigraphy of Niger Delta: Geologic Notes: American Association of Petroleum Geologists Bulletin, v. 622, p. 295-300.

Castagna, J.P., M.L. Batzle, and R.L. Eastwood, 1985, Relationships between Compressional-Wave and Shear-Wave Velocities in Elastic Silicate Rocks: Geophysics, v. 50/4, p. 571-581.

Chang, C., M.D. Zoback, and A. Khaksar, 2006, Empirical Relations between Rock Strength and Physical Properties in Sedimentary Rocks: Journal of Petroleum Science and Engineering, v. 51/3, p. 223-237.

Haug, K., R. Nygaard, and D. Keith, 2007, Evaluation of Stress and Geomechanical Characteristics of a Potential Site for CO₂ Geological Storage in Central Alberta, Canada: 60th Canadian Geotechnical Conference and 8th Joint CGS/IAH-CNC Groundwater Conference, p. 21-24.

Horsrud, P., 2001, Estimating Mechanical Properties of Shale from Empirical Correlations: SPE Drilling & Completion, v. 16/02, p. 68-73.

Hoshino, K, H. Koide, K. Inami, S. Iwamura, and S. Mitsui, 1972, Mechanical Properties of Japanese Tertiary Sedimentary Rocks under High Confining Pressure: Geological Survey of Japan Report 244, p. 1-200.

Jones, W.B., and J.G. Clark, 2011, Structural Development of the Niger Delta Outer Fold and Thrust Belt.

Khaksar, A., P.G. Taylor, Z. Fang, T. Kayes, A. Salazar, and K. Rahman, 2009, Rock Strength from Core and Logs: Where We Stand and Ways to Go: Society of Petroleum Engineers, SPE 121972.

Lal, M., 1999, Shale Stability: Drilling Fluid Interaction and Shale Strength: Society of Petroleum Engineers, SPE 54356, 10 p.

McNally, G., 1987, Estimation of Coal Measures Rock Strength Using Sonic and Neutron Logs: Geoexploration, v. 24/4, p. 381-395.

Nygaard, R., and G. Hareland, 2007, Application of Rock Strength in Drilling Evaluation: Society of Petroleum Engineers: SPE 106573, 7 p.

Odundun, O., and M. Nton, 2012, Facies Interpretation from Well Logs: Applied to SMEKS Field, Offshore Western Niger Delta: Journal of Physical Sciences and Innovations, v. 2, 23 p.

Oyler, D.C., C. Mark, and G.M. Molinda, 2008, Correlation of Sonic Travel Time to the Uniaxial Compressive Strength of US Coal Measure Rocks: Proceedings of the 27th International Conference on Ground Control in Mining, July, p. 338-346.

Shi, X., Y. Meng, G. Li, J. Li, Z. Tao, and S. Wei, 2015, Confined Compressive Strength Model of Rock for Drilling Optimization: Petroleum v. 1/1, p. 40-45.

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Rock Compressive Strength: A Correlation from Formation Evaluation Data for the Niger Delta

Babatunde Salawu, Olumayowa Onabanjo[1], Dr Reza Sanee [2]

[1] Shell Petroleum Development Company[2] Robert Gordon University

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Table of Contents

1. Objective

2. Background

3. Methodology

4. Results & Analysis

5. Conclusions & Recommendations

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Objective

To develop a correlation for the Niger Delta & regions with similar

lithology & depositional environments that can be used to derive **rock**

compressive strength from formation evaluation measurements.

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Background

- Importance of understanding rock strength
- Impact of rock strength on well operations
 - Bit selection
 - Wellbore Stability Modelling
 - Reservoir Compaction Modelling
 - And much more

4

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

The Niger Delta

- The Niger Delta continues to be a key contributor to the world's hydrocarbon supply.
- Sample spread
 - Land 50%
 - Swamp 34%
 - Shallow Offshore 16%

Figure 1: Map showing area studied

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Niger Delta Formations

- Benin (28% of samples)
- Agbada
 - Upper Agbada (48%)
 - Lower Agbada (28%)
- Akata (Not available)
- 100% Shale Samples

Source: Wikipedia

Figure 2: Chrono-stratigraphic Chart & Stratigraphic succession in the Niger Delta

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Rock Compressive Strength Correlation

- A lot of work has been done on rock strength correlations for other regions
- But no specific investigation has been published for the Niger-Delta

Equation	Model & Reference	Comment
$UCS = \left[\frac{1.00}{0.0013(\Delta t_c - 50)}\right] - 2.66$	DT – Onyia (Nygaard and Hareland 2007)	Formations in <mark>Continental</mark> <mark>USA</mark>
$UCS = 0.77 \left[\frac{304.8}{\Delta t}\right]^{2.93}$	DT – Hursrud (Horsrud 2001)	North Sea high porosity shales
$UCS = 0.43 \left[\frac{304.8}{\Delta t}\right]^{3.2}$	DT – GoM (Chang et al 2006)	Pliocene epoch and younger
$UCS = 1.35 \left[\frac{304.8}{\Delta t}\right]^{2.6}$	DT - Global(Chang et al 2006)	Applicable globally
$UCS = 0.5 \left[\frac{304.8}{\Delta t}\right]^3$	DT - Cubed(Chang et al 2006)	Applicable in GoM
$UCS = 10 \left[\frac{304.8}{\Delta t - 1} \right]$	DT – Lal (Lal 1999)	For high porosity tertiary shales
$UCS = 7.97E^{0.91}$	E - Hursrud (Horsrud 2001)	North Sea high porosity shales
$UCS = 7.22E^{0.712}$	E – Chang (Chang et al 2006)	Strong and compacted shales
$UCS = 8.48e^{4.89\rho_b} * 10^{-5}$	Rho - Khaksar(Khaksar et al. 2009)	Developed from published data for $\rho_b < 2.4$ g/cc

Table 1: Worldwide UCS models for Shales

Figure 3: Worldwide UCS models for shales

Source: Chang, C., Zoback, M.D. and Khaksar, A., 2006. Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 51(3)

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Methodology

Figure 4: Process flow to derive correlation

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Unconfined Compressive Strength Test

- Sample positioned between the plates
- Axial load is applied uniformly and continuously without shock until the maximum load (F) is reached where the sample fails

Source: http://osp.mans.edu.eg/geotechnical/Ch1C.htm

Figure 5: Unconfined Compressive Strength test

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Results - UCS Magnitudes

- UCS generally increases with depth
- There is a marked departure from the trend in the Lower Agbada formations.
- Deviation could be for a number of reasons – Not enough data to conclude

Figure 6: UCS magnitudes vs. depth

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Analysis

Figure 7: Process flow for Correlation

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Niger-Delta UCS vs. Slowness

Benin & Upper-Agbada UCS magnitudes

Chart 3: Benin & Upper Agbada UCS vs. Slowness

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Niger-Delta UCS vs. Young's Modulus

Chart 6: Benin & Upper Agbada UCS vs. Young's Modulus

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Niger-Delta UCS vs. Poisson's ratio

Chart 9: Benin & Upper Agbada UCS vs. Poisson's ratio

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Rock strength correlation

Figure 7: Relationship between measured and derived UCS values

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Derived UCS correlations vs. Compressional velocity

Chart 10: Derived UCS correlations vs. Compressional Velocity

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Derived UCS correlations vs. Young's Modulus

Chart 11: Derived UCS correlations vs. Young's Modulus

AFRICAN ENERGY IN THE 21st CENTURY PAVING THE WAY FOR THE FUTURE 5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Conclusion: Niger Delta UCS correlations for Benin & Upper Agbada formations (Shales)

A correlation developed between formation slowness & UCS which is valid for 76% of samples tested.

$$UCS = 0.24 \left[\frac{304.8}{\Delta t}\right]^{2.664}$$
(1)

A correlation developed between Poisson's ratio & UCS which is valid for 77% of samples tested.

$$UCS = 0.2017 * v^{-3.162}$$
(2)

A correlation developed between Young's modulus & UCS which is valid for 80% of samples tested.

$$UCS = 0.3966E + 1.1956 \tag{3}$$

No distinct correlation in the Lower Agbada formation.

Conclusion cont'd.

- Previously there was no published correlation for rock strength in the Niger Delta
- Derived Niger Delta correlations showed similar trends to other worldwide models with distinguishable differences in magnitude
- With proper calibration Niger Delta models can be applied to:
 - bit selection determination
 - wellbore stability modelling
 - Compaction modelling
 - and so on

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Recommendations

- Data quality
 - Impact of storage conditions on sandstone samples
 - Impact of age and dryness on data quality
 - Impact of older sonic logs on data selection

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Questions & Answers

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

References

- Adeoti, L. et al., 2015. Comparative Analysis Of Hydrocarbon Potential In Shaly Sand Reservoirs Using Archie And Simandoux Models: A Case Study Of "X" Field, Niger Delta, Nigeria. Ife Journal of Science, 17(1).
- Amani, A. and Shahbazi, K., 2013. Prediction of Rock Strength using Drilling Data and Sonic Logs. International Journal of Computer Applications, 81(2) pp. 5-10.
- Avbovbo, A.A., 1978. Tertiary Lithostratigraphy of Niger Delta: Geologic Notes. AAPG Bulletin, 62(2) pp. 295-300.
- Chang, C., Zoback, M.D. and Khaksar, A., 2006. Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 51(3) pp. 223-237.
- Haug, K., Nygaard, R. and Keith, D., 2007. Evaluation of stress and geomechanical characteristics of a potential site for CO2 geological storage in central Alberta, Canada. 60th Canadian Geotechnical Conference and 8th Joint CGS/IAH-CNC Groundwater Conference pp. 21-24.
- Horsrud, P., 2001. Estimating mechanical properties of shale from empirical correlations. SPE Drilling & Completion, 16(02) pp. 68-73.
- Hoshino, K., 1972. Mechanical properties of Japanese tertiary sedimentary rocks under high confining pressures. (Report Geological Survey of Japan). pp. 1-200
- Khaksar, A. et al., 2009. Rock Strength from Core and Logs, Where We Stand and Ways to Go. Society of Petroleum Engineers.
- Lal, M., 1999. Shale Stability: Drilling Fluid Interaction and Shale Strength. Society of Petroleum Engineers.
- McNally, G., 1987. Estimation of coal measures rock strength using sonic and neutron logs. Geoexploration, 24(4), pp. 381-395
- Nygaard, R. and Hareland, G., 2007. Application of Rock Strength in Drilling Evaluation. Society of Petroleum Engineers.
- Odundun, O. and Nton, M., 2012. Facies Interpretation from Well Logs: Applied to SMEKS Field, Offshore Western Niger Delta. (Journal of Physical Sciences and Innovations) (2) (2012)
- Oyler, D.C., Mark, C. and Molinda, G.M. 2008. Correlation of sonic travel time to the uniaxial compressive strength of US coal measure rocks. Proceedings of the 27th International Conference on Ground Control in Mining, July. pp. 338-346
- Shi, X. et al. 2015. Confined compressive strength model of rock for drilling optimization. Petroleum 1.1, (2015) 40-45.
- WB Jones, J.C., (2011) Structural development of the Niger delta outer fold and thrust belt.

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Acknowledgement

- We would like to thank the following for their immense contribution to this project:
- Dr Reza Sanaee
- Matthias Akhideno
- Richard Ebisike
- Oloruntobi Olalere
- Stephen Okonji
- Evans Isowamwen
- Fugro Nigeria Limited, Warri
- Onyum Salawu
- Shayaan & Hamdan Salawu
- Olumayowa Onabanjo

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Supporting slides

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Formation evaluation data

Of particular interest to this study are some of the formation evaluation data that are related to rock strength:

- Formation Slowness (Δt)
- Young's Modulus (v)
- Poisson's ratio (E)

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

UCS testing – Selection criteria

- shale formations
- Diameter (D) to height ratio
- prefect cylinders
- well documented history
- Corresponding values for Formation sonic wave slowness, Poisson's ratio and Young's modulus.

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

A tested sample showing the failure path

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Correlation of UCS magnitudes vs. formation evaluation data

Formation data set	Slowness (R ²)	Young's (R ²)	Poisson's (R²)
All (Benin, Upper & Lower Agbada)	0.65	0.65	0.66
Upper Agbada	0.68	0.73	0.72
Benin & Upper Agbada	0.76	0.80	0.77

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Calculations for unconfined compressive strength

Calculations

The cross sectional area:

$$A = \frac{\pi D^2}{4} \tag{1}$$

• The Unconfined Compressive Strength of the sample:

$$\sigma = \frac{F}{A} \tag{2}$$

Where,

 σ = Unconfined Compressive strength, KPa

- A = cross sectional area, m^2
- D = average sample diameter, m
- F = maximum load, kN

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Derived UCS correlations vs. Poisson's Ratio

Chart 12: Derived UCS correlations vs. Poisson's ratio

5-7 December 2016 | Safari Park Hotel | Nairobi, Kenya

Key formation evaluation equations

- Relationship between compressional slowness & shear velocity ۰
 - Castagna (Castagna et al 1984) suggest that for clastic formations, the relationship that can be used to deduce the shear velocity is described in the equation below
 - $-V_P = (1.16 * V_S) + 1.36$
- Haug's equation can be used to derive parameters of E and v from well logs ۰
 - According to Haug (Haug et al 2007), the dynamic Poisson's ratio (v_d) is calculated from the relationship between the P wave velocity (V_p) and S wave velocity (V_s) as:

•
$$v = \frac{V_P^2 - 2V_S^2}{2(V_P^2 - V_S^2)}$$

- Young's modulus can be calculated from the velocity (V_s) and rock density (ρ) as shown below (Haug et al. 2007)
 - $E = 2\rho V_S^2 (1 + v)$
- The reason we selected the linear regression analysis is because of its simplicity.