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Abstract 

 
It is now well known that pore development in organic-rich mudrocks is associated with organic matter (OM) thermal maturation. Organic-rich mudrocks 
usually contain mixed types of kerogen. Therefore, routinely used vitrinite reflectance measurements cannot define exact OM transformation stages. 
Understanding the evolution of OM-hosted pores and mineral pores to well-defined oil and gas generation stage is essential to characterize mudrock 
reservoirs. Immature Barnett (quartz and clay mineral-rich), Woodford chert and mudstone (quartz and clay mineral-rich), and low-maturity Boquillas 
(carbonate-rich) core and outcrop samples were heated anhydrously in gold tubes to study the evolution of OM and OM pores during maturation. 
Geochemical characterization such as oil and gas yields, Rock-Eval, and Leco TOC analyses were used to characterize kerogen type and OM 
transformation stages. Samples were also prepared using Ar-ion milling to investigate pore development with field-emission scanning electron 
microscopy (FE-SEM). The OM in these immature and low-maturity mudrocks can be dominantly kerogen (Barnett) or bitumen (Boquillas) or a mixture. 
The difference between kerogen (insoluble, in-situ OM) and bitumen (soluble migrated OM) did not affect much of the pore evolution, even though 
theoretically kerogen contains more inert (dead) carbon than bitumen. In all samples, modified mineral pores are dominant during bitumen and oil 
generation, while during gas generation, nm-sized equant OM-hosted pores are dominant. The nanometer-sized equant OM-hosted pores observed during 
wet gas and dry gas window are interpreted to be related to gas generation. In the Barnett and Woodford mudstone, as maturation begins, OM first 
shrinks, forming artificial shrinkage pores. Later, the volume of OM significantly decreases. These pores continue to develop into the gas generation 
stage.  
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Problem Statement and Objectives
It is well accepted that organic matter (OM) pores in mudrocks are predominantly 
formed by thermal maturation. We have demonstrated that the change of size and 
shape of OM pore is related to stepwise transformation of organic matter and can be 
associated with generated pre-oil bitumen, oil, gas, post-oil bitumen (pyrobitumen), 
char, and irreducible formation water by combined geochemical characterization, 
laboratory pyrolysis, and SEM petrography methods (Ko et al., 2014).
     
In this study, we investigate and compare the effects of bulk mineralogy, total 
organic content (TOC), and initial organic matter type (kerogen vs. bitumen) on the 
evolution of OM pores and mineral pores in mudrocks. 

Immature Barnett siliceous mudrock (clay mineral-rich), Woodford chert and 
siliceous mudrock, and low-maturity Boquillas calcareous mudrock samples were 
artificially matured. OM pore evolution in each was investigated and compared.   
    
Specific research questions include: 
1. Do differences in kerogen type affect OM pore development 
and evolution?
2. Does bulk mineralogy affect timing of OM transformation 
and thus pore evolution?
3. Does Woodford chert or mudstone develop better porosity?
4. Does pore evolution differ in kerogen and bitumen?

Methods
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1. Immature or low-maturity Barnett, Eagle Ford-equivalent Boquillas, and Woodford mudrocks 
    were collected from cores and outcrops. For each sample, 8 small-diameter rock cylinders  
    (6 mm diameter and 2-3 cm length) were drilled perpendicular to bedding planes. 

2. The cylinders were pyrolyzed in sealed gold tubes that were placed in stainless steel autoclaves. 
3. The pyrolysis experiments were conducted under isothermal conditions at temperatures of 
    130, 300, 310, 333, 367, 400, and 425°C for 72 hrs reaction time. A constant confining pressure 
    was maintained at approximately 68.85 MPa (10,000 psi) during experiments. 

4. All generated petroleum (gas, liquid, and solid) were collected for compositional 
    analyses. HC yield was determined by gas chromatography (GC). Saturate, aromatic, resins, 
    and asphaltene (SARA) separation and quantification were done on each sample. 
5. A flat surface was prepared by Ar-ion beam milling from post-pyrolysis rock cylinders (without 
    solvent extraction) for SEM analysis. A FE-SEM was used to image pores and their association 
    with OM and mineral grains. 
6. The remaining sample was pulverized and analyzed for Rock-Eval and Leco TOC.
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Types and Evolution of OM Pores and Mineral Pores 
Kerogen (solid) --> Bitumen (liquid) --> Oil (liquid) 

Organic matter (OM): a general term referring to any liquid or solid materials 
enriched in organic carbon . OM can have many forms, only some of which 
generate HCs and host pores. 

Kerogen: insoluble solid organic geopolymer. Kerogen can form pores by 
maturation and the pores are voids left behind by HCs that were generated and 
expelled or were original pores associated with plant material. Kerogen can 
contain (A) primary OM pores and (B) convoluted-OM pores. The primary OM 
pores are present before any diagenesis begins. 

Bitumen: soluble, viscous, liquid OM, from thermal cracking of kerogen under 
immature or low-maturity conditions. It can have a wide range of viscosities. This 
term is equivalent to "pre-oil bitumen" used by Curiale (1986) and Mastalerz and 
Glikson (2000). Bitumen is liquid and cannot host pores over long periods of Hme. 

Q: quartz; C: calcite; OM: organic matter; K: kaolinite 

Modified Mineral Pores (with Relic OM) 
(A) Combination Mineral/OM pore (8) Retention pore 

Solid/solidified bitumen: very viscous, difficult to dissolve 
in organic solvent, also equivalent to "pre-oil bitumen" but 
solidified in the subsurface, able to form combinaHon 
OM/mineral pores. 

Residual/retained oil: the "liquid oil in subsurface 
but is solid or highly viscous at surface conditions 
resulted from expulsion of volatiles on the way up 
the well bore and/or during handling and storage" 
(Bohacs et aI., 2013), able to form retenHon pores. 

Types of OM pore 

(e ) Nanometer-sized OM spongy pore 

Pyrobitumen: secondary product from bitumen. Pyrobitumen 
consists of insoluble, nonvolatile, solid HC residues that 
"still retain some hydrocarbon generation capacity upon further 
heating" and can host pores (Bohacs et aI., 2013). 
This term is equivalent to "post-oil bitumen" used by Mastalerz 
and Glikson (2000). Bernard et al. (2012) suggested 
pyrobitumen hosts (C) nanometer-sized spongy OM pores. 

Char: the "ultimate residue of HC generation with minimal H 
content and essentially no remaining potential for generating HCs, 
derived from further heating of pyrobitumen and bitumen." 
Char can also host (C) nanometer-sized spongy OM pores. 

Summary of pore evolution associated with generated petroleum OrganiC-Matter 
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Woodford Mudstone: Pore Types and Pore Evolution

Ini�al Pore Network (Ro = 0.5%)
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bubble pores.
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1) Bulk mineralogy has rela�vely li�le impact on OM pore evolu�on
2) OM-pore evolu�on from bitumen decomposi�on (Boquillas) is 
     similar to that from kerogen decomposi�on (Barne� & Woodford)
3) Ini�al pore networks are dominanted by interP and intraP pores, 
    which are a func�on of deposi�onal and diagene�c processes
4) In general, dominant types of pores change from combina�on 
    OM/mineral pores, bubble pores, reten�on pores, to nm-sized 
    spongy OM pores with increasing thermal matura�on.
5) Combina�on OM/mineral pores, bubble pores, reten�on pores,
    and OM-lined pores can be connected when OM (previously 
    migrated bitumen or oil) becomes connected due to pore-scale 
    migra�on. The connec�vity depends on distance of migra�on. 

Conclusions
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