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Abstract

Interpretation of a set of 3D seismic volumes totaling 120 mi? (311 km?) substantiates strike-slip faulting in the Hugoton Embayment in
southwest Kansas. The seismic data was used to assess the potential for CO,-EOR in Chester and Morrow sandstone reservoirs in four fields
including Pleasant Prairie, Eubank, Cutter, and Shuck. The fields lie on or adjacent to horst blocks that are each bounded by a large reverse
fault that may also be part of a flower structure, a radiating pattern of faulting that is diagnostic of strike-slip motion. The horsts are also
accompanied by karst features aligned on lineaments crossing the horsts. Seismic indicates the lineaments are due to fractures and disturbed
amplitude correlations that span the Mississippian strata into the Lower Ordovician Arbuckle Group. The bounding faults bend around the
horst blocks and are considered to be restraining bends along the strike slip fault. Normal faults and fracture zones occur on the side opposite to
the bounding fault indicating extension, a feature common to a restraining bend. In the area immediately south of Shuck Field seismic time and
isochron maps indicate a minimum of 2 miles (3.2 km), perhaps up to a maximum of 4 mi (6.4 km) of lateral offset of a bounding fault. The
timing of the primary tectonic movement is Morrow-Atokan, but seismic data reveals thinning extended movement across the bounding faults,
indicating that the structures were active for considerable amount of time.
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Top Mississippian structural contour map
with published (red) and new inferred faults (green)
from regional mapping with study locations

<ansas Interactive Online Geology Mapper (KIOGM)
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Many others have documented reverse faults in Kansas,

e.g., D. Merriam, Parker Gay, D. Baars, L. Gerhard, et al.

Lateral offset of basement magnetics, Parker Gay

Kansas Interactive Online Geology Mapper
(KIOGM) -- http://maps.kgs.ku.edu/co2/




Characteristics of Strike-Slip Faults

—> flower/palm tree structures, restraining bends, relay ramps
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Complex geometries of strike-slip faults -- Kim et al. (2003)




Regional Geology — Structural Evolution

1.

Anadarko Basin — Climax Late Paleozoic tectonism
during Atokan resulting from oblique, left lateral
wrenching along the Wichita Uplift

Hugoton Embayment (HE) — 3,900 mi? (10,000 km?)
extension of Anadarko Basin linked by directed stress
from wrench faulting

Major HE structures — Episodic reactivation along
basement lineaments/weaknesses; pre- and post
tectonism, movement influenced by far-field stress

Petroleum system — Hydrocarbon maturation, migration,
and accumulation closely related to structural evolution.

Presenter’s notes: Anadarko Basin — Proterozoic extension to Phanerozoic compression.

Hugoton Embayment (HE) — 10,000 km? northern extension of Anadarko Basin.

Major structures in the HE — prominent evidence of compressional reactivation along basement lineaments.

Episodic structural movement — post tectonic movement affecting sedimentation/stratigraphy throughout Phanerozoic.
Pattern of deformation — strongly influenced by basement weaknesses (the template) and evolving stress field.




Ancestral Rockies Structures
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Regional tectonic deformation spans Early Chesterian-Late Leonardian
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Stress interacted with dominant basement structural grain — NW- and NE-trending

Presenter’s notes: Gondwana Laurentia collision resulting in evolving stress trajectory.
Stress interacted with basement structural grain — NW and NE
deformation in Kansas part and parcel of Ancestral Rockies.




Left Tateral wrench faulting along AWA was at maximum during Atokan time
-> simultaneous regional drowning of shelf and basin
in area affected by regional directed stress (hypothesis being tested)
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Simultaneous drowning of the shelf and basin

during the Atokan
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Structure Top
Meramec
Mississippian
-> Overlying Chester
age Mississippian

locally incised into
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North-south structural dip
along Chester incised valley
interrupted by structurally controlled fall lines as
valley crosses regional lineaments
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Pleasant Prairie Field

* Original seismic acquisition by Helmerich & Payne,
~pre 1990

* 4 ms sample rate

* Evaluated off the shelf, no additional processing

sas Interactive Online Geology Mapper (KIOGM)

: \\l Mefamec time converted depth
" [Meramec struf}ural contourmap
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Pleasant Prairie Field —
West Bounding Reverse Fault & Flower Structure
Fault tip at 650 ms (above KCA horizon) occurs at Crossline 196. \
Tip at Basement at 1028 ms occurs at Crossline 209.
West-east offset is 1430 ft.
Middle of IVF is seen at Crossline 302. Map is Meramec Time. *

Presenter’s notes: Western Reverse fault — compressional.
East side — extensively fractured below location of IVF — tensional.
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Pleasant Prairie Field stratigraphy indicates episodic growth of ~ ™==————
. . . 2 mi

fault in lower Paleozoic = persistent basement weakness

*  West-East Profile flattened @ Morrow = 800 ms

* Note that Meramec — Arbuckle thickens ~ 15 — 30 ms on downthrown side}iﬁ{

* Arbuckle-PreCambrian also thickens ~ 15 ms on downthrown side

* Note also that KCA — Morrow thickens ~ 8 ms on downthrown side

Presenter’s notes:

»  Erosion on top of the Mississippian not account for thinning. Rather St. Louis oolite pay zone thickens across top (Ernie Morrison’s work). Concentration
of ooid shoal over the crest of the structure suggest concurrent uplift and paleotopography.

»  Thicken west of fault .



020w < I 8 B G0 [H] onrun vz

nec Time

L3 A
osd
ndex -
s.'. . 'S
[ i < z >
| 1
Pleasant Prairie Field -- Karst 2mi

NW-SE arbitrary profile (coincident with NW-SE regional lineament) illustrating multiple karst features
Prominent features/”pipes” noted at stations 30, 170, 242, 260

In most cases, ‘pipes’ extend well below Meramec, into Arbuckle IVF system at sta 31079(

Profile continues SE of Federal 2 into a tributary
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Pleasant Prairie — En Echelon NW-SE trending faults extending NW of
main structure -> Relay ramp with flower structure

¢ Structural arch is clearly exhibited.

¢ NW-SE trending flower structure in apex of structure as fault blocks step down basinward.

* Isochronal thickening occurs in discrete step changes at faults.

* Note that the IVF is not expressed in this isochron. Karst is accentuated.

+_Southern fault coincident with N-SE regional lineament -> translates stress westward. *




Meramec Time Most Negative Curvature
at 860 ms
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* West bounding fault
Pleasant Prairie Field * NW-trending cross cutting fault & karst
correspond with regional lineament (white dashed lined)
* NE-SE trending karst coincident with IVF




Regional Meramec structure & local depth
converted seismic at Pleasant Prairie Field
-- illustrating restraining bend, relay ramp with flower structure >
indications of strike-slip faulting
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* Relay ramp connecting Pleasant Prairie along west-east segment in northwest |, >
Pleasant Prairie -- compressional regime with diagnostic “flower structure”
and reverse throw

Presenter’s notes:
Relay ramp connecting Pleasant Prairie along west-east segment in northwest Pleasant Prairie -- compressional regime with diagnostic “flower structure”

and reverse throw.
»  NW-SE trending karst coincides with regional lineament.
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Eubank Field
-- another restraining bend at lineament intersection,
possible relay ramp
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Eubank Field

Seismic data acquired ~1990

2 ms sample rate

Merged 3 separately acquired surveys
Applied Pre-stack and Post-stack Inversion

eractive Online Geology Mapper (KIOGM)

‘S209y Area | Zoom 1o Location | Fiter Weks | Labed Weds | ownload Vel | Fine Fleass | Pt POF | Chear HGHIGHE | WP - Crous sectus 1o

/l IVjera}nec time converted depth
:Meramec structural contaur map




—
T. Viola Ls

1200

1250

1350

1400

=

* K
an .
o

Eubank Field — time structure
* Note bounding reverse fault at crossline 40 forming western border of the field N
* IVF cut (Crossline 92) is not as deep as downthrown block at Meramec*

* Pickens 5 not drilled in deepest Meramec cut in tributary.
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Eubank Field — T. Morrow Datum 2 mi

Downthrown block thickens at Meramec, but uniform thickness below = most of
movement occurred post-Meramec.

Reverse fault on bounding west side -- Fault tip at Mid Lansing occurs at Trace 26, tip at
Basement occurs at Trace 36, yielding a west-east drift of 1100 ft.
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Most Negative Curvature Near Base IVF Time

Lattice fabric in Background generally independent of IVF orientation
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Shuck / Adamson seismic characterization
Meramec time converted to
.
Meramec time depth
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Presenter’s notes: Near surface velocities coupled with real stratigraphic complexity render the overall time structure indications to be of somewhat limited use.
However, Depth Converted Structure is reasonably well adjusted due to significant well control availability. The structural nose in the south central portion of

the Meramec Depth contains a reverse fault on the east flank.
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Archer — Liberal West strike-slip fault

* Horizontal offset from trace 330 (fault tip) to trace 319
(below Precambrian) is approximately 1200 ft.

* Meramec datum at Baty C1 (-3648), that at Tucker K1, (-3809);

Vertical relief 161 ft. * *




Primary East Bounding Fault --
Shuck to Liberal West fields

Top Basement Time  Top Arbuckle Time  Top Meramec Time
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Shuck —West Liberal Thrust Strike-Slip Evidence in Isochrons
* Left Image Basement Time

* Middle Image Heebner-Basement Isochron
* Right Image Morrow-Basement Isochron
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It would appear that the corroboration of strike slip movement is evidenced
in each of these isochrons, probably more so in the Heebner to Basement.
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Conclusions Regarding Seismic Data

* Conventional amplitude data, coupled with
processed volumetric curvature data
demonstrate that vertical connectivity from
Basement to near surface rocks is possible, if not
probable;

» Strike-slip faulting occurs in both the
northernmost and southernmost study areas,
adding additional structural complexity, and
opportunity of fracture system enhancement.




Geological Conclusions

Major HE structures — Reactivation along basement
lineaments affected sedimentation during the Paleozoic;
occurred pre- and post tectonism, influenced by far-field
stress

Anadarko Basin —Late Paleozoic tectonism climaxed during
Atokan resulting from oblique, left lateral wrenching along
the Wichita Uplift

Hugoton Embayment (HE) — 3,900 mi? (10,000 km?)
extension of Anadarko Basin linked by directed stress from
wrench faulting along the Wichita Uplift

Petroleum system — Hydrocarbon maturation, migration,
and accumulation closely related to systematics and timing
(kinematics) of the complex, but often subtle fault system
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