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Abstract

Shallow-marine and paralic clastic depositional systems are described by a large volume of sedimentological, architectural and
geomorphological data. A new method that enables the convergence of these datasets into a common descriptive scheme facilitates the
identification and application of potential outcrop and modern hydrocarbon-reservoir analogs. To this end, a database has been developed for
the collation of data in standardized format, in a way that allows significant comparisons between different depositional systems, and the
derivation of consistently defined attributes that can be applied in subsurface studies. The Shallow Marine Architectural Knowledge Store is a
relational database devised to include data on the sedimentary architecture of shallow marine and paralic ancient depositional systems, and on
the geomorphic organization of corresponding modern environments. The database incorporates data on sedimentary bodies and surfaces and
geomorphic units, which are classified on descriptive (e.g. grain size) and interpretive (e.g. sub-environment) categories, and characterized on a
variety of attributes (e.g. geometries, spatial relationships, hierarchical relationships). Depositional systems, and stratigraphic intervals or
planform segments thereof, are classified on descriptive parameters (e.g. shelf gradient) and controlling factors (e.g. tidal regime) to allow the
selection of relevant outcrop or modern analogs. The database can be queried to return a quantified characterization of multiple analogs, and
data can be synthesized in models that incorporate uncertainty related to variability in sedimentary heterogeneity. To illustrate the range of
genetic units types, depositional systems, associated data and potential applications, example database output is showcased relating to: - the
hierarchical arrangement and scaling relationships of architectural elements that form constructional units in Quaternary deltas of different
types; - the facies organization of nearshore sandstone belts and the geometry of associated parasequences, from the Upper Cretaceous of the
Western Interior Seaway in Utah (USA); - the geometry of modern geomorphic features, and their relations with the geometry of architectural
elements interpreted as the preserved product of the morphodynamic evolution of corresponding landforms. Particular attention is paid to how
the database output can be applied to the construction of accurate, quantitative 3D geological models.
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Classification of SMAKS genetic units

SMAKS depositional tracts correspond to plan-
form belts that represent gross depositional
settings, for modern systems, and to their
preserved expression in the rock record, in the
form of sedimentary bodies that are continuous
but potentially architecturally complex, and with
boundaries that are time-transgressive and may
crosscut stratigraphic surfaces, for ancient
systems. Depositional tracts are particularly —
but not only — applicable to largest-scale
environmental subdivisions. These units enable
a lithostratigraphic approach, allowing the
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Sequence stratigraphic units are classified on the hierarchical order of
units they belong to, and on the type of unit at the particular level. Four pre-
defined hierarchical levels are considered: sequence, systems tract,
parasequence set, and parasequence. Sequence stratigraphic units are
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The Shallow-Marine Architecture Knowledge Store

The Shallow-Marine Architecture Knowledge Store

(SMAKS) is a relational database devised for

data on the sedimentary architecture of ancient
shallow-marine and paralic siliciclastic successions, and
on the geomorphic organization of corresponding
modern environments. The database allows
incorporation of data from the published literature,
uploaded to a common standard to ensure consistency
in data definition. SMAKS incorporates data on geologic

entities of varied nature and scale (i.e., surfaces,
depositional tracts, architectural elements, sequence
stratigraphic units, facies units, geomorphic elements),
and characterizes their type, geometry, spatial relations,
hierarchical relations, and temporal significance.
SMAKS has been devised to allow translation of different
types of datasets in a way that reconciles different
approaches to analog characterization (e.g., outcrop
studies, seismic interpretations, geomorphic mapping).
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mclude informal types. Parasequence sets are classified as 'aggradational’,
‘progradational’ or 'retrogradational’. Systems tracts are classified as 'FSST
(falling-stage systems tract)’, 'LST (lowstand systems tract)’, 'TST
(transgressive systems tract)' or 'HST (highstand systems tract)'. Sequences
are classified as 'depositional sequence' (cf. Mitchum et al. 1977) or 'genetic
stratigraphic sequence' (sensu Galloway 1989). Given that sequence
stratigraphic units are defined on the basis of the sequence stratigraphic
surfaces that define their bases and tops, it is possible for any succession to
be described in terms of both depositional sequences and genetic
stratigraphic sequences at the same time.

LST =
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characterization of rock domains that represent
the preserved product of a sub-environment but
embody a potentially complex depositional
history. SMAKS depositional tracts largely
correspond with the 'facies tracts' of many floogip,
authors. Depositional tracts can be classified: 1) ﬂ°0d|
on categories adop\ed in the source works (e.g.,
‘coastal facies belt'), in a text field, and 2) on
alternative pre-defined classification schemes
(e.g., based on bathymetric zonation of the
'foreshore’,
‘'shoreface’, 'offshore transition zone', 'offshore" ).

SB = sequence boundary
MFS = maximum flooding surface
rsme = regressive surface of marine erosion
mrs = maximum regressive surface
@ waveftidal ravinement surfaces

lowstand systems tract
TST = transgressive systems tract
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Depositional tracts

SMAKS geomorphic elements are discrete landforms that are
characterized by distinctive physiography, resulting from a particular set
of depositional and erosional processes, and that represent different
sub-environment types.

Architectural elements are discrete sedimentary bodies with
characteristic facies associations and architectural properties (nature of
bounding surfaces, external and internal geometries, stratal trends),
interpretable as the preserved product of a sub-environment of
deposition. These units enable an architectural approach (cf. Miall
1985), which allows the characterization of rock volumes that typically
record the finite morphodynamic evolution of a geomorphic element.
Both architectural and geomorphic elements are classified: 1) on
categories adopted in the original work, and 2) on an open-ended
classification scheme that contains a number of pre-defined classes
applicable to sub-environment types at various scales.

Sequence-stratigraphic
surfaces and units

HST = highstand systems tract
FSST = falling-stage systems tract

Gravel Facies units
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Grainsize classes based on schemes of
G Folk (1980) and Farrell et al. (2012)

other classes:

-G = gravel/conglomerate (generic)

-S = sand/sandstone (generic)

-M = mud/mudstone (generic)

C=clay

Z=silt

GIS = gravel-dominated gravel/sand heterolithic deposits
S/G = sand-dominated gravel/sand heterolithic deposits
SIM = sand-dominated sand/mud heterolithic deposits
M/S = mud-dominated sand/mud heterolithic deposits
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Trough or planar cross-bedding

Planar horizontal lamination Heterolithic structures

Low-angle cross-bedding Hummocky or swaley cross-stratification

Trough cross-bedding

SMAKS facies units are elementary lithologic
units with sub-bed-scale resolution. The
subdivision of deposits into different facies units is
based upon identification of changes in sediment
texture, structure, paleoflow directions. Facies
units are classified on attributes that describe
textural characteristics and sedimentary structures
(original and predefined classes).

Planar cross-bedding

Flaser bedding

Wavy bedding

Lenticular bedding

Swaley cross-stratification
Hummocky cross-stratification

Hierarchy of SMAKS genetic units

Hierarchical relationships between entities of a different rank (depositional tracts in
subsets or architectural elements, architectural or geomorphic elements in depositional
tracts, architectural elements in sequence stratigraphic units, facies units in architectural
elements), and between pairs of genetic units of the same rank (depositional tracts,
architectural elements, or geomorphic elements), but associated with different
hierarchical levels, are expressed by means of unique numeric indices used to identify
each individual unit. These identifiers are used to relate the tables so that the nature of the
containment (nesting) of each unit within higher-scale parent units can be recorded.

Example hierarchy of architectural
and geomorphic elements
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e, DT = depositional tract

» .\¥ AE = architectural element

Multiple orders of depositional tracts can be erected for a system, to allow depositional tracts
that crosscut different architectural elements to be defined (e.g., delta-front depositional tract
that crosscuts several delta-lobe architectural elements; see figure above). Architectural
elements are permitted to contain lower-scale depositional tracts and elements themselves
may belong to multiple scales, to reflect the hierarchical arrangement of the sub-environments
they represent (e.g., tidal channel-fill in tidal-flat deposits; delta lobes within a delta complex).

3
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parasequence 1 Spatial relationships and distribution of SMAKS genetic units
contain Spatial relationships between pairs of genetic units of the Transitions are expressed by means of the numeric identifiers In addition, multiple alternative classification schemes are
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vertical, strike, and dip directions. The following
conventions are adopted: vertical transitions are upward
directed, dip transitions are downdip/offshore directed, strike
transitions are right-hand lateral directed, facing offshore.

SMAKS depositional systems

All SMAKS geologic entities are assigned to case studies, i.e.

datasets on a particular ancient or modern

system. All depositional systems (or parts thereof, e.g.,
stratigraphic intervals) are classified on multiple attributes that
describe environmental characteristics and controlling

factors (e.g., basin type, shelf width,

paleolatitude), tied to case-study metadata (e.g.,

data sources, ‘data quality index’).

These classifications permit filtering SMAKS in order to obtain

sets of output from selected relevant analogs.
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relationship include the identifiers of the surface across which
the transition is recorded, the nature of the transition (‘sharp’ or
‘gradual’, for elements and facies units), and the type of stratal
termination (e.g., 'updip onlap', 'downlap of upper unit').

parent architectural element, in terms of bathymetric or
physiographic setting (e.g., as ‘proximal’, ‘medial’, or ‘distal’).
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i.e. the angle that defines
the direction of migration of
a depositional shoreline-
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H H SMAKS facies model for a shoreline profile : H : : : H H H H H : H H H
Facies models for paralic and Characterization of parasequence-scale shallow-marine sandstones of the Cretaceous Western Interior Seaway (Utah, USA) Characterization of hierarchically arranged architectural elements in Quaternary deltas Comparing deltaic constructional units and parasequences
. ) -mean high water /"~ R ID Case study ocation  Age Data source The progradation angle is the angle that tracks the direction  Information on the geometry of parasequence-scale ID Case study Location Data source SMAKS allows derivation of output information onthe  Here, data are presented that relate to building blocks In the shallow-marine realm, the delta-lobe thickness 10 = delta lobe
SMAKS can be queried for figures at bottom left, and on the —mean low water " ’ n of progradation of the regressive evolution of a  sandstones are suggestive of possible controls on —r — properties of architectural elements at multiple  of deltas at multiple scales, and which are originally development of parasequences is delta-front thick
proportions of genetic units in right), or classes of lithofacies 1 _|Star Point Sandstone Utah, USA | Santonian-Campanian|Hampson et al. (2011) parasequence (i.e., its regressive shoreline trajectory;  deposition in nearshore areas. A positive relationship is 2 |PoDelta Italy, Adriatic Sea Correggiari et al. (2005a) hierarchical levels, corresponding to different scales  categorized following different nomenclatures. The commonly interpreted in terms of (i) elta-front thickness == delta front
hlgher-sc_a!e parent units. For blO‘Uf_baUO" |nd|c_es (see_ flgure on . 4 |Composite database - - Reynolds (1999) Helland-Hansen & Martinsen 1996), relative to the paleo- seen between the thickness and the dip length of Correggiari et al. (2005b) of observation, because hierarchical relationships are  studied elements, from four different Quaternary variations in relative sea level, 8 Lognormal distributions
example, it is possible to compute the right). Spatial variations in mean fairweather wave base (includes Blackhawk Formation data) |(Utah, USA)|(Campanian) horizontal, corrected for structural dip. Below, scatterplots ~ parasequence sandstone units (Pearson correlation T - - tracked in terms of the containment of lower-order  depositional systems (Po, Mississippi, Yellow River, whereby flooding surfaces are 9
i i i i izati g P : ; f X i 3 |Mississippi Delta USA, Gulf of Mexico Frazier (1967) ik f f i P R locaion  scale N
thg propoﬂlon of qlfferent facies- facies qrga_mzatlon can be relate the dip length of parasequence shallow-marine coefficient of 0.686; p-value 0.000), which may be d elements in higher-order parent elements. and Ebro deltas), are all recognized in the original generated by positive eustatic deltafront 145 103 15
unit types in depositional tracts, or ct]aljactenze_d in terms Of_ changes Offshore 6 |Ferron Sandstone, ‘Notom Delta’ Utah, USA |Turonian Li etal. (2010) sandstones to their progradation angle. The field of negative interpreted in terms of a control by the source and supply Roberts (1997) Also, SMAKS can be queried for output on units that ~ source works based on interpretations of suitable fluctuations or increases in Fy 6 deltalobe 235 054 25
of architectural-element types in within genetic units of a given type, s 1009 Foreshore Shoreface transition Shelf offshore mean storm wave base Lietal. (2011a) progradation angle (forced regression) and of positive rate of sand to the nearshore (cf. Niedoroda et al. 1984; 5 |Ebro Delta Spain, Mediterranean Sea |Somoza et al. (1998) are solely classified following nomenclatures adopted ~ subsurface datasets. subsidence, or (i) in terms of delta H
sequence _stratlgrapr_uc units. This and across genetic units ofagiven £ 90% & - . progradation angle (depositional regression) are expanded Cowell etal. 1999; Helle & Helland-Hansen 2009), whereas pain, - in the source publications or field studies, i.e., for ~ Quantified database output on spatial scales, lobe-switching processes, whereby 2
type of |nformat|on can be rank. Effective integration of many 3 ° \ Sedimentary structures Lietal. (2011b) in separate graphs, in which exponential and power-law the down-dip lateral continuity of shallow-marine 26 | Yellow River Delta |China, Bohai Sea Xue (1993) which no equivalent sub-environment type or  temporal scales, and hierarchical relationships of avulsion of the genetically related [
employed to build base-case datasets can be achieved when o 80% \ y Lietal (2012) regression curves are respectively fitted to the data. Thedip ~ sandstones tend to be highest under conditions where the Van Gelder et al. (1994) architectural-element designation exists in SMAKS at  relative containment is presented; this information is distributary channel causes lobe w4
faues_ mc_)dels, which can describe |nte_rpret|ve classes of_ sub- 2 70% \ 8 Hummocky or swaley cross-stratification . length of parasequence nearshore sandstones appears to ratio between the rate of accommodation generation and - . the time of data entry (the classification of sub-  directly relevant to the characterization of hierarchy in abandonment and subsequent
the likelihood of occurrence of environments can be attributed g 60% B Lenticular bedding A Zhu et al. (2012) increase as the progradation angle approaches 0°. sediment supply is closest to zero. Lietal. (1998) environments is expandable and can accommodate  the organization of the depositional units, as drowning (Van Wagoner etal. 1990).
different grain-size categories and based on SMAKS criteria and B 509 8 Trough or planar cross-bedding 27 |Ferron Sandstone, ‘Last Chance Delta’ |Utah, USA | Turonian-Coniacian |Garrison & van den Bergh (2004) i ) i Wang et al. (2015) units atmany levels). recognized within and across depositional systems. The latter mechanism is expected to 2
associated sedimentary structures definitions, which may differ from 3 o B Planar cross-bedding : Sandstone dimensions and regression type be active in the context of river-
in various sub-environments. the ones adopted in the original G 40% = Trough cross-bedding Van den Bergh & Garrison (2004) f°"°e‘}' normal regression dominated coasts, such as the i fﬁ \q\
These proportions could be based source works, even when a > 200 ® Horizontal lamination or low-angle cross-stratification regression interpreted setting of the Cretaceous ] | — ==
30% ; inati forced = 100000 Delta complexes Delta lobes P 9 0
on the total measured thickness of corresponding nomenclature is E . B Planar horizontal lamination ) L ) normal regression £ p Ferron Sandstone Member of the 0 8 24 32 40
facies units, and could relate used. Re-classification of units is S 20% m Symmetrical ripple cross-lamination West Western Interior Basin in Utah East Cretaceous 100, "egression = Mancos Shale of Utah (USA). Thickness (m)
>0 € ’ ] o el i _laminati =
SMAKS grain-size categories (see undertaken only when a match with £ 10% . ® Asymmetrical ripple cross-lamination T e o Interi —_ =) Here, we compare the temporal and
figures below), the types of internal SMAKS criteria and definitions can 2 0% B Massive e R ——— nterior e & S 10000/ spatial scales of genetic units from The example output above relates the thickness
sedimentary stn{ctures seen in be established. 7] Bioturbation index N=1815 rice River Fm. P Pierre Shale Seaway se » o Mississi i Quaternary deltas with those of distribution of architectural elements that are originally
sand-prone facies units (see _ _ thkhaﬁ??}:ﬁgate Sst. 2 2 10 = 5 pp parasequence shallow-marine classified as ‘delta lobes’ and of sand-prone delta front
. . . . 00 B1 m2m3 ms4 W5 WG tar Point Sgt Z] S ° - ] sandstones from the Last Chance elements/tracts. Consideration of the relative size of
Proportion of grainsize classes in paralic elements &L < 3 5 1000 and Notom deltas of the Ferron - lobes and delta front deposits is required to give context
Mancos Shale < . ~ - f . e : .
Tidal ch M d J % . Sandstone, which accumulated in WO to the data in the scatter plot on the left below, which
idal channe SMAKS can be queried for output that describes the spatial ~ Facies transition statistics in shoreface deposits 500 m 1 1_1 05 0 05 1 15 2 c the context of a retroarc foreland relates thickness and duration of Quaternary deltaic
M. channel complex Bay relationships between genetic units of a given rank. For o 100% _ : Progradation angle (°) : 3 100 basin subject to greenhouse wet elements and Ferron parasequence sandstones.
example, vertical transition statistics could be obtained for grain- ﬁ = grainsize 100 km N =66 -1 -0.5 0 0.5 1 15 2 climate. T_he scatter plot on the right below relates thickness and
size categories, or for the types of internal sedimentary Oy 80% classes N =58 Progradation angle (°) dip length for Cretaceous parasequence sa.ndstongs
structures seen in sand-prone facies units (see figure on the _&’ g = C (clay) 100 an_d Quaternary t_ie_lta»front sa_ndstones associated with
right). SMAKS allows transition statistics to be computed at any 28 60% = Z (silt) * SMAKS case study after: Armstrong (1968); Howell & Flint (2003) units that were originally classified as ‘delta complexes’.
order, to elucidate the internal facies organization of particular w2 o
types of units (e.g., of a tempestite bed), to quantify the degree of 5E =M (mud) after Kauffman & Caldwell (1993) negative angle @\ 2 100000
development of stratal trends (e.qg., rate of thickening upward of ‘6 & 40% u-M SMAKS stores data on characteristics of T i = —_ i\ . o + 4 L} = = o »° o ¢ ‘ . 03
shoreface deposits; see figure below), or to constrain reservoir 2 & (mudstone) parasequence-scale sandstones. These E 100000 T 100000 positive angle E .o L AP . 1000077*.'**9“ : ST 1111
) models based on Markov chains. =3 u-S sandstone units represent nearshore sand . . . - - - f " al® . 0 L4 H o0 —_ = ° L3
ms/ § £ 20% (sandstone) belts, but no specific genetic significance is ~ Geometry of arbitrarily defined parasequence deflned_ Jarasequence £ forcediicaressicn s * porr el egression 3 10 : > - : ® 4 . E S ;'.. e "' i % *. .
N =377 N=38 Stratal trends in shoreface deposits 8 implied for their definition (e.g., in sandstones and offshore-transition-zone sand content 2 10000 2 0000 g ° S s . ,.i. L g 1000 .
¥ i -to-1 (7] [} = o o % 3
. 10 s 0% S N=1913 bathymetric terms). Also, no sand-to-mud 100 35 < . . - =RE=0: ) 2 eI L 2
Lagoon Tidal flat rainsize class |n IowerllthofaCIes threshold is considered in the SMAKS - 2 . 3 2 Delta superlobes Delta lobes The scatter plots presented below relate strike- = o o CREL) 2 400
= 9 standard for the definition of these units. The @ __ | . 2= 30 ° ® o] g oriented width, dip-oriented length, thickness and 2:: L] o
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