Advanced Chromatography, Cuttings Analysis and Well Logging Integration: An Optimized Petrophysical Approach*

Carlos Vargas Caña¹, D. Llanos¹, N. DeCastro¹, and S.Vija¹

Search and Discovery Article #41838 (2016)** Posted August 29, 2016

*Adapted from oral presentation given at AAPG Geosciences Technology Workshop, Optimizing Geoscience and Engineering to Explore and Produce in a Low Price Environment, May 18-19, 2016, Rio de Janeiro, Brazil **Datapages © 2016 Serial rights given by author. For all other rights contact author directly.

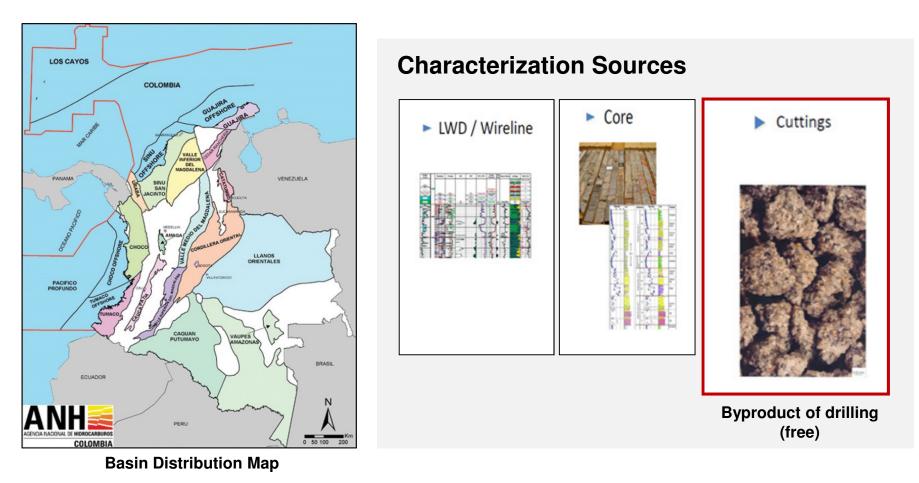
¹Weatherford LTD, Columbia (<u>Carlos.Vargas@LA.Weatherford.com</u>)

Abstract

The characterization and petrophysical evaluation from conventional electric logs has become a real challenge when interpreting unconventional reservoirs or reservoirs characterized by the presence of fresh water and/or heavy oil fluids. The use of surface logging tools such as quantitative gas detectors in combination with the geochemical analysis of rock cuttings, utilizing XRD, XRF and Pyrolysis (TOC) instruments, has greatly aided the identification and characterization of hydrocarbon zones. In addition, it allows identification of the water content, which is obtained from Pixler ratios and aromatic hydrocarbon content. Another important consideration in evaluating the reservoir is a need to consider the effects of salinity, clay content, and laminations. The use of the advanced gas/geochemical analysis and its interpretation has solved models for hydrocarbon saturation in areas where high uncertainty exists or where, for economic or other reasons, it was not possible to acquire full sets of electric logs. This combination of surface logging techniques and interpretation method provides a reliable characterization solution.

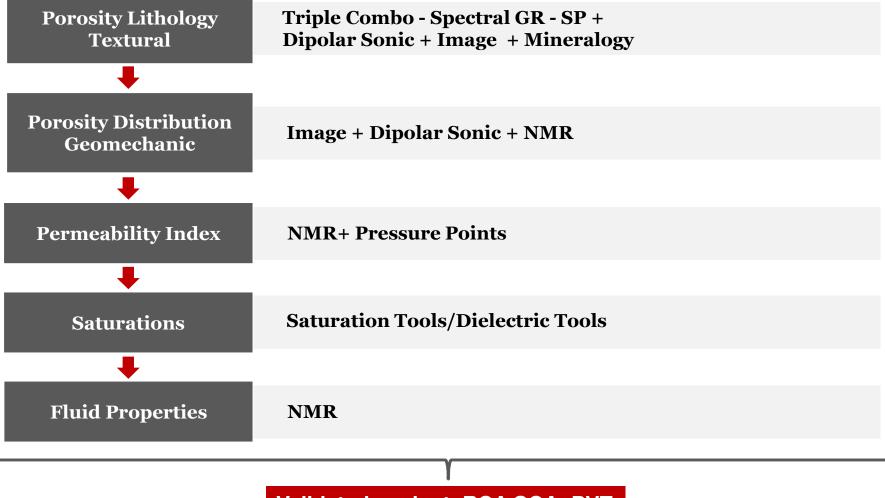
Advanced Chromatography, Cuttings analysis and Well Logging integration

An Optimized Petrophysical approach


Natalia De Castro A., Carlos Vargas, Dario Llanos, Sergio Vija. Weatherford LTD Colombia.

Rio de Janeiro I 18-19 May 2016

General Overview


• Diversity on structural, stratigraphic and Petrophysic characteristics

Ideal Scenario

Validated against RCA,SCA, PVT

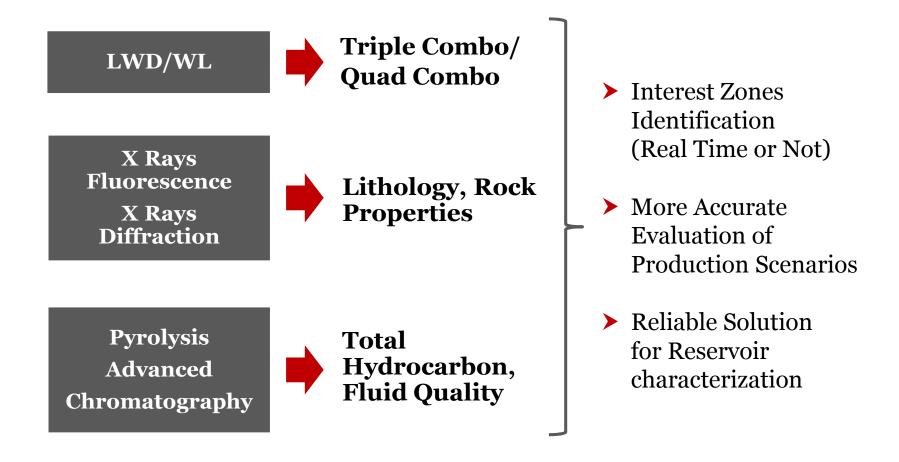
Ideal Scenario

Petroleum Industry Reality

Economic CHALLENGES

✓ Keep Developing Reservoirs in a **OIL LOW PRICE SCENARIO**

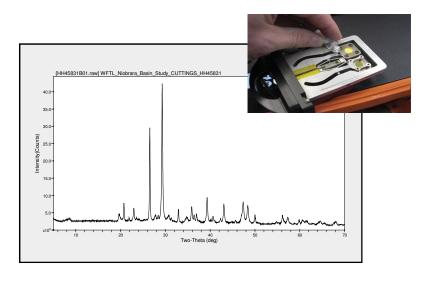
> Operational CHALLENGES


- ✓ Trip Time Savings/ Closing Wells.
- ✓ Avoid Risk on OH Logging, **Mainly Special Services**

Characterization CHALLENGES

- ✓ Complex Lithology
- ✓ Fluid Reservoir Characterization
- ✓ Unconventional Reservoir
- ✓ Others.

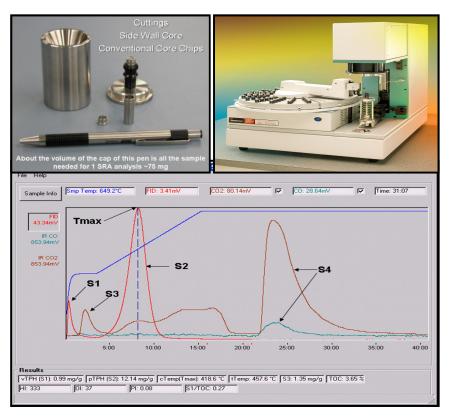
Optimized Data Acquisition


Geochemical Analysis

X Rays Fluorescence

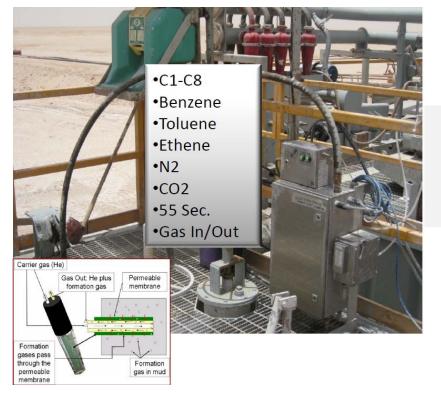
H Bitiga	2	1				12 Ma	ajor Ele	ments				13	14	15	16	17	He at a set
Li	Be					19 Trace Elements				B 	C	N	0	F	Ne ~~		
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	15 7 R. P Ropiese	н г 0 S ман	IT II	18 an Ar 244
19 1 21 K 7main	Ca	Sc	Ti Ti	V Vindus	Cr 	25 J Set Mn Mn	Fe 	Co the	Ni	Cu oge	Zn ∞	BH y DO Ga Colum	Ge	As	Se	Br	36 67 Kr Kynn
27 · · · · · · · · · · · · · · · · · · ·	Sr Sr	ж с но Ү там	Zr	Nb	Mo	43 ° 100 Te totatum	Ru	Rh	Pd	Ag 	Cd	In	Sn "	Sb	Te	I http://	Xe tes
Cs Cine	Ba	Lanthanides	n f n Hf	Ta	74 IN W 5	Re	N I IN Os onn	Ir kino	Pt	Au	Hg	и у за Tl	Pb	Bi Bi	Po	At	Rn Enter
Fr (23)	BB EN Ra Inden	Actinides	Rf	Db	Sg totogen	Bh	Hs	Mt Moreau	DS Describes	Rg	Uub	Uut	Uuq	Uup	Uuh Tudedat	Uus	uuo
		sr t in La	Ce Ce	SS Pr	Nd Nd	Pm	Sm	Eu Eu	Gd	65 Tb	Dy	Ho	Er	m Tm	Yb	Lu	
		Ac	90 Th Th	Pa Pa	92 ^{(*} 3) U turin	Np Np	94 PU Pu Pessias	Am	M (pa)	97 r pry Bk Inteles	n ^r (N) Cf	BS Estimates	Fm Innine	101 (79) Md Matteries	102 (54) NO Milian	183 (Sei) Lr Levanian	

X Rays Diffraction


- > Quartz
- ► K-Feldspar
- Plagioclase
- Calcite
- > Dolomite

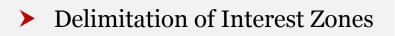
- Siderite
- > Pyrite
- Anhydrite
- Total Clay

Geochemical Analysis


Pyrolysis Equipment

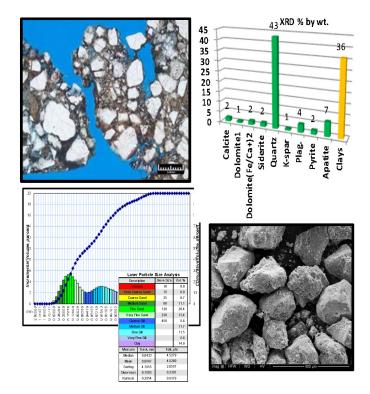
- Free Hydrocarbon Content (Gas/Oil) – S1
- Remaining Generative
 Potential S2
- > Organic Richness– **TOC**
- ► Thermal Maturity **Tmax**

Advanced Chromatography


Delta System

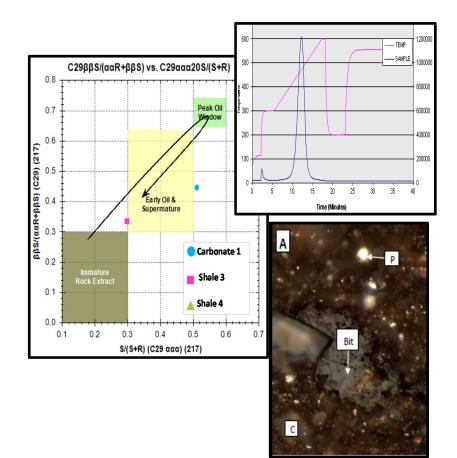
Advanced Chromatography

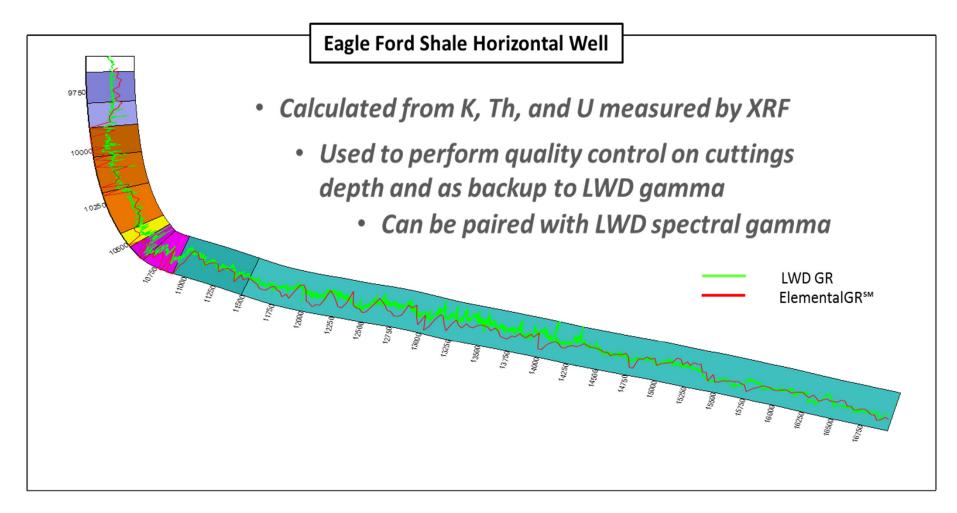
- Total Hydrocarbons Content: THC
- Index Fluid Mobility: **FM**
- Index Fluid Saturation: FS
- Aromatics/ Alkanes Ratio
- C1/C2 Ratio
- C6/C7 Ratio
- C1% Ratio
- Liquids Ratio
- Gas/Liquids ratio



- Fluid Typification
- Change in Fluid Typing
- Connectivity or compartmentalization
- Correlation
- Geosteering

Cuttings Lab analysis


Analysis	Min sample (g)	Destructive?
Photography	N/A	Ν
Thin Section	2	Y
XRD	2/10	Y
XRF	5	Y
SEM	1	Y
Laser Grain Size	1	Y
Grain Density	15	Y
Acid Solubility	5 (per fluid)	Y
Cap Pressure	15	Y
CST	15	Y


Cuttings Lab analysis

Analysis	Min sample (g)	Destructive?
Gas Comp	N/A	Ν
Extract Fingerprinting	1 g	Y
Biomarker GC-MS	5	Y
TOC by LECO	1	Y
Pyrolysis	1	Y
Vitrinite Reflectance	5	Y

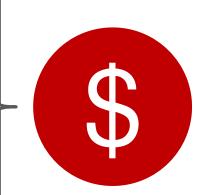
Elemental GR Calculated from K, Th, U

osted by

Real Cases

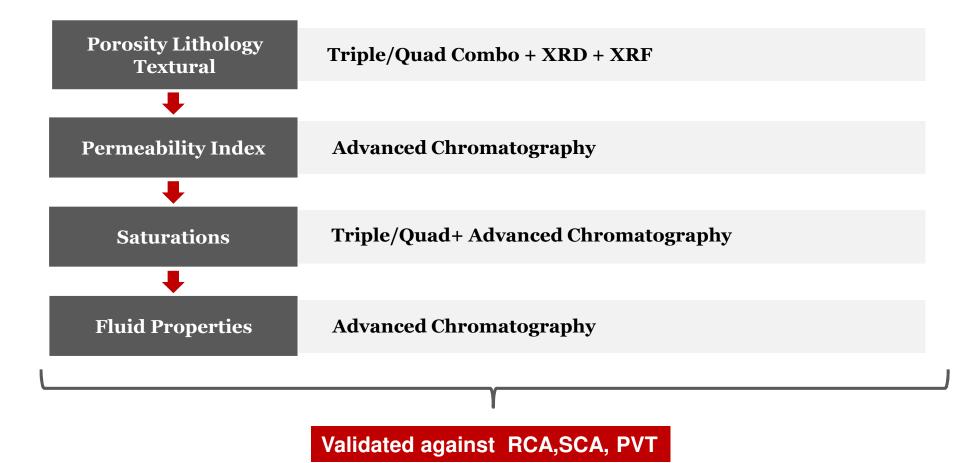
Fitting Solutions to Challenges

OPERATIONAL


Saving Operational Times

- ✓ Minimize Rig Time
- Minimize Operational Risk (Tight Hole & Open Hole Logging Hold ups)

CHARACTERIZATION


> Assuring a Complete set of Information

- ✓ Reservoir Characterization
- ✓ Stimulation Jobs
- ✓ Completions
- ✓ Others.

Making More of Existing Data

