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Abstract 

 

Ancient and modern rift basins can be found on every continent of the world and account for 31% of giant fields discovered (Mann et al., 2003) 

with over 620,000 (MMBOE) of estimated recoverable hydrocarbons worldwide. New rift plays are just being discovered as we explore 

beneath salt deposits and penetrate deeper continental margin strata. The biggest challenge in these basins is understanding reservoir location, 

quality, and extent. Axial- and marginal-sourced rivers provide very different sediments to the system and have significant geomorphologic 

differences. The architecture of rift systems varies dramatically from those located within continental versus coastal/marine environments 

(Gawthorpe and Leeder, 2000). A three phase study of rift drainages was undertaken to document these differences and quantify the various 

morphologies of drainage that characterize rifts. A literature and imagery review of ancient and modern rift drainage systems was undertaken 

with the focus on ancient systems being issues and challenges to producing discovered, developed, and undeveloped hydrocarbon in rift system 

reservoirs. In the second phase of this work, a study of the morphology of a modern rift setting in East Africa using ArcGIS and satellite 

imagery allowed mapping and quantification of rift drainage morphologic characteristics, such as: drainage architecture, rift size, channel size 

and flow characteristics and the overall drainage nature versus catchment area. Phase 3 of this study focuses on applying the criteria and 

knowledge built in Phases 1 and 2 to improve prediction of drainage nature and subsequent reservoir distribution and development in a high 

resolution 3D seismic survey in the Dampier Sub-basin off the NW coast of Australia. Quantitative seismic geomorphological techniques have 

been employed to assess the morphology, flow character, and drainage size of this paleo-rift system toward a better understanding of reservoir 

distribution and risk. 
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Study 
Motivation 
- Rift Basins account 
for 31% of 
discovered giant oil 
and gas fields (Mann 
et al., 2003) 
- Continuing 
exploration into 
deeper areas 
demands ways to 
de-risk (Ex. Tupi 
discovery offshore 
Brazil) 
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Pre-Salt 
Targets 

Post-Salt 
Targets 

(Feijo, 2013) 

Offshore Brazil: Passive Margin versus Rift 



What is a Rift Basin? 
 Basin that has undergone 

crustal extension and passed 
through five sedimentary 
evolution cycles (Prosser, 
1993): 
 Pre-rift (S1): everything 

deposited before active fault 
movement 

 Syn-rift (S2-S4): everything 
deposited during active faulting 

 Post-rift (S5): everything 
deposited after faulting has 
ceased 

 Syn-rift stage comprises three 
main divisions: 
 Rift Initiation (S2) 
 Rift Climax (S3) 
 Rift waning stage (S4: 

Immediate Post-Rift (Prosser, 
1993)) 
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(Doust, 2015) 



North-West Shelf of Australia 
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(Geoscience Australia, 2010) 
(Geoscience Australia, 2013) 

Dampier Sub-basin Northern Carnarvon Basin 
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Seismic 3-D Surveys 
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• Approximately 2284 km2 (882 mi2) of seismic coverage 
• Ajax-1: targeted and penetrates syn-rift sediments not on the rift shoulder 
• Limited well coverage, as would be found in an exploration type project 



Jurassic Syn-rift Stratigraphy of the 
Dampier Sub-Basin 
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(Geoscience Australia, 2010) 

S4: Immediate 
Post-rift 

S3: Rift Climax 

S2: Rift Initiation 

S1: Pre-rift 



Seismic Mapped Horizons from Stratigraphy 
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(Geoscience Australia, 2010) (Marshall and Lang, 2013) 

J20 Surface 

• Longley et al. (2002) first put together a regional play interval (RPI) stratigraphic 
naming convention based on seismic surfaces, well data, and biostratigraphy 

• Marshall and Lang (2013) further refined this sequence stratigraphic framework 
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Seismic Mapped Horizons from RPI 

(Marshall and Lang, 2013) 

J20 Surface 
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Seismic 3-D Surveys 
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Integrated Surface Interpretation Workflow  
K10 Surface Example 
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(7 iterations,  
1 Filter Width) 

Smooth 

Isopachs Interpret Horizon 

Create Surface 
Flatten & Realize Cube 



Faults within Dampier Sub-basin 
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J20 Isopach: S2 Rift Initiation 
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J20 Isopach: S2 Rift Initiation 
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J20 Isopach: S2 Rift Initiation 
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J20 Isopach: S2 Rift Initiation 

20 

25 km 

Thickness Time  
(ms) 

400 

1700 



J20 Isopach: S2 Rift Initiation 
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J20 Isopach: S2 Rift Initiation 
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J20 Isopach: S2 Rift Initiation 
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J20 Isopach: S2 Rift Initiation 
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J30 Isopach: S3 Rift Climax 
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J30 Isopach: S3 Rift Climax 
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J40 Isopach: S3 Rift Climax 

29 

25 km 

Thickness Time  
(ms) 

0 

800 



J40 Isopach: S3 Rift Climax 
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J47-J50 Isopach 
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J50 Isopach: S4 Immediate Post-Rift 
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J50 Isopach: S4 Immediate Post-Rift 
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Conclusions 

 An integrated surface interpretation workflow allows 
for the use of a suite of information to inform on the 
spatial and temporal deposition of potential reservoirs 

 Depocenter location in the Dampier Sub-basin 
changed through time 
 Not always located in modern structural “basin center” 
 Fault movement was asymmetrical and fault initiation (S2) 

extension is taken up by multiple faults until the border fault 
network links up and takes over the majority of extensional slip 

 Footwall uplift restricts transverse inputs, leading to development 
of major axial sediment deposition for much of rift basin evolution 

 Transverse sediment inputs are most abundant during rift climax  
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