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Abstract 

 

The Upper Devonian-Lower Mississippian Bakken Formation in the Williston Basin is an important source rock for oil production in North 

America. The Bakken Formation comprises three units: upper and lower black shales, and a middle member. Upper and Lower Bakken shales 

are high quality source rocks for reservoirs in the Middle Bakken, Upper Three Forks, and Lower Lodgepole formations. The Middle Bakken 

Member - which consists of gray, interbedded siltstone and sandstone with shale, dolostone, and limestone - is under investigation in this study. 

The goals here are to determine the regional distribution of lithofacies and the depositional environment of the Middle Bakken Member and to 

explain diagenetic sequence and reservoir-quality parameters in the Williston Basin.  

 

The reservoir quality of the Middle Bakken Member is primarily influenced by mineralogy and cementation, which caused low porosity and 

permeability and are intrinsically linked to facies distribution in the basin. Pore types include primary intergranular, intragranular, and fracture. 

Secondary moldic and vugular porosity resulted from dissolution of biogenic fragments. Dolomitization is pervasive throughout the Middle 

Bakken, although we also see facies-exclusive concentrations of dolomite cement that were mapped regionally. Secondary cementation 

includes quartz overgrowths, K-feldspar, clay cement, and pyrite as both cement and nodules. This study will present the vertical and lateral 

distribution of dolomite and pyrite cementation zones correlated to lithofacies and depositional environment of the Middle Bakken Member via 

core and petrographic thin-section analysis in the Williston Basin. 

 

 

 

 

 



ABSTRACT
The Upper Devonian-Lower Mississippian Bakken Formation in the Williston Basin is an important source rock for oil 

production in North America. The Bakken Formation is comprised of three units: Upper and Lower Bakken shales and Middle 
Member. Upper and Lower Bakken shales are high quality source rocks which source reservoirs in the middle Bakken, Upper Three 
Forks and Lower Lodgepole Formations. The Middle member of Bakken Formation, which consists of gray, interbedded siltstone 
and sandstone with shale, dolostone and limestone, is under investigation. The goals of this study are to determine the regional 
distribution of lithofacies and depositional environment of the Middle Bakken Member and explain diagenetic sequence and 
reservoir quality parameters in the Middle Bakken reservoir.

The reservoir quality of the Middle Bakken Member is mainly influenced by mineralogy and cementation resulting in low 
porosity (average ~2.5%) and permeability (average ~0.04 mD) and linked to facies distribution in the basin. Dolomitization is 
pervasive throughout the unit; however, we see local concentration of dolomite cement. Moreover, secondary cementation occurred 
including quartz overgrowths, K-feldspar, clay cement and pyrite as both cement and nodules. Not only dolomitization but also 
pyrite cementation plays an important role in reducing pore spaces in the reservoir. The pore types are intergranular, intragranular, 
fracture and vugular. Secondary intragranular porosity generally resulted from dissolution of biogenic fragments. 

The distribution of dolomitization and pyrite cementation zones are shown correlating with the lithofacies and depositional 
environment of the Middle Bakken Member via core and petrographic thin section analysis in the Williston Basin.

1. INTRODUCTION

2The Williston Basin is an approximately 285.000 km  large intracratonic basin that extends
 across the United States and Canada. The thickness of the basin is up to 16.000 ft.

The Upper Devonian-Lower Mississippian Bakken Formation in the Williston Basin is an 
important source rock for oil production in North America.

The Bakken Formation is comprised of three units: upper and lower organic-rich black 
shales and middle member, which is gray, interbedded siltstone and sandstone with shale, 
dolostone and limestone (Pitman et al., 2001).

Five facies have been described and each of them represents different depositional environments in a shallow-
water environment (Smith and Bustin, 1996).
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Figure 1.1: The map shows 
selected core locations and 
cross section lines in North 
Dakota portion of the 
Williston Basin used for this 
study.
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Figure 1.2: Stratigraphic 
column of Bakken-Lodgepole 
Petroleum System and north-
south cross section in the 
Williston Basin (modified 
from Webster, 1984)

2. GEOLOGIC HISTORY

Figure 2.1: Paleogeographic map of North America during Late 
Devonian (360 Ma) showing the Williston Basin (modified from 
Blakey, 2005). HBB= Hudson Bay Basin, MRB= Moose River 
Basin.

Basin Formation

Figure 2.3: The depositional environment and systems tracts of the Middle 
Bakken Member facies (modified from Smith & Bustin, 1996). A, B, C, D and E 
represent facies and their positions in shallow marine environment. Sandy 
interval was deposited as a part of Facies C.

Depositional Environment

As a result of uplift of the Transcontinental Arch in Devonian, the basin configuration 
changed from a circular basin to an elongated shelf basin (Figure 2.4).

A major second order T-R cycle resulted in deposition of the Bakken 
Formation (Anna, 2011).

rd th3  and 4  order cycles were determined in the Middle Bakken Member 
(Figure 2.3).

(Anna, 2011; modified 
from Gerhard and 
Anderson, 1988).

Figure 2.4: Maps show depositional pattern of Tippecanoe 
and Kaskaskia sequences in the Williston Basin. (A) Ordovician to 
Late Devonian with southwest and southeast seaway 
connections; (B), Late Devonian to Early Mississippian with a 
northwest seaway connection through the Elk Point Basin in 
Canada. Arrows indicate seaway connections.

Figure 2.2: Trans-Hudson 
Orogenic belt and north-south 
structures in the Williston Basin 
(modified Nelson et at., 1993).
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Depositional Environment, Diagenesis and Reservoir Quality of the Middle Bakken Member 
in the Williston Basin, North Dakota
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3. STRATIGRAPHIC SECTION 4. FACIES ANALYSIS

LBS

MB-A

MB-B

MB-C

SI

MB-D

MB-E

UBS

ANDERSON 28-33 #1-H

A B

C

D E

SI

-Low energy conditions due to the clay-
silt size grains.

-Pervasive bioturbation.
-Well-oxygenated environment during 

deposition in an offshore environment.

-Low energy conditions due to the fine 
grain-sized sediments.

-Ripples and laminations show energy 
fluctuation.

-Intercalated coarser grains from land 
via storms.

-High bioturbation reflects favorable 
benthic life.

-Low intertidal  environment.

-Laminated siltstone deposited in a 
relatively higher energy 
environment showing upper flow 
regime conditions.

-Above normal wave base since no 
low-energy sediment is present.

-Lenticular and wavy bedding and 
wave ripples reflect unidirectional 
and bidirectional currents.

-This facies is interpreted to have 
been deposited in an intertidal 
environment.

-Constant high energy conditions because 
of absence of bioturbation and low 
energy sediments.

-Cross and planar laminations are 
interpreted as channel fills and bars.

-The massive appearance was produced by 
liquefaction resulting from either storm 
waves (Madsen, 1978) or earthquake 
(Obermeier, 1996).

-Deposited in a Middle Shoreface 
environment.

- The fine grain size reflects 
relatively lower energy 
conditions.

- Nereites trace fossils suggest 
deposition below fair-weather 
wave base. Teichichnus trace 
fossils indicate shallow marine 
storm-event sedimentation.

-Silt and clay grains reflect low 
energy conditions.

-High bioturbation demonstrate 
favorable benthic life destroyed 
primary sedimentary structures.

-Storm-event sedimentation 
indicates it was deposited close 
to storm wave base.

Charlie Sorenson 3TFH, 10518.2 ft., XPL. Olson 10-15 1H, 10650.55 ft., PPL.

0.5 mm

A B

Wanner 25 No.1, 8852.8 ft.

Calcite-filled
Fractures

Pyrite Nodules

Braaflat 11-11H, 9931 ft.
Transition from the Lower Bakken 
Shale to Facies A.

Lower Bakken Shale

Middle Bakken Shale

Olson 10-15 1H, 10640.3 ft., PPL. Williams 25-36, 10686.1 ft., PPL.

100 μm

A

0.5 mm

Violet Olson 31-29H, 10013.6 ft.
Helminthopsis trace  fossils and marine 
storm-event sediment.

Storm-event sediment

Helminthopsis

Nereites Trace Fossils (Helminthopsis). 
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100 μm
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Charlie Sorenson 3TFH, 10440.2 ft., PPL. 
Ripples.
Rogne 44-34H, 10673.5 ft.

Planar mud lamination and Floatstone in 
Facies E.

Comford 9-12H, 9435.2 ft.

Floatstone

Mud lamination

Cross lamination in sandy interval. 
Rosenvold 1-3017, 9293.2 ft.

1 mm

Charlie Sorenson 3TFH, 10458.4 ft., XPL.
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Williams 25-36, 10675.7 ft., PPL.

200 μm

B

The bottom of sandy interval and 
cosmorhaphe.

AV-Wrigley 0607H-1, 7270.5 ft.

Cosmorhaphe

Facies C
(Silty Dolostone)
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(Sandy Interval)
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5. ISOPACH MAPS
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6. STRUCTURAL CROSS SECTIONS
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Figure 3.1: The Facies of Middle Bakken Member from Anderson 28-33 #1-H core. MB-A: Facies A; MB-B: Facies B; MB-C: Facies C; MB-D: Facies D; MB-E: Facies E; 
SI: Sandy interval; UBS: Upper Bakken Shale; LBS: Lower Bakken Shale. 

Pyrite Nodules and calcite-filled
fractures.

Figure 5.1: Facies A shows its thickest 
deposition in the northwest of the area due to 
Nesson Anticline. Numbers represent the 
thickness in feet. 

Figure 5.2: Facies B gets thinner towards 
south. Numbers represent the thickness in 
feet. 

Figure 5.3: Facies C gets t . 
The thickest deposition is in the east of Nesson 
Anticline. Numbers represent the thickness in 
feet. 

hinner towards south

Figure 5.5: Facies D shows its thickest 
deposition in the limbs of Little Knife 
Anticline. Numbers represent the thickness 
in feet. 

Figure 5.6: Facies E shows its thickest deposition in 
the north and south of the study area. The anticlines 
might have not affected the deposition of Facies E 
so much. Numbers represent the thickness in feet. 

Figure 5.4: Sandy interval is generally 
thinner then 4 ft. Its thickest deposition in 
the east of Nesson Anticline. Numbers 
represent the thickness in feet. 

Figure 6.1: NW-SE oriented cross section shows all facies get thinner towards south. Sandy interval is 
thickest in the center of the basin because of the structures in the basin. 

Figure 6.2: NE-SW oriented cross section shows all facies get thinner towards southwest except Facies D 
whose thickness was effected by Nesson Anticline.

Figure 6.3: N-S oritented cross section demonstrates all facies get thinner towards south. No structures 
affected the thicknesses along the line in general. 

Figure 6.4: W-E oriented cross section. The thicknesses of facies are variable along the line because of 
Little Knife and Nesson Anticlines.

All core width: 3 inches
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8. CONCLUSIONS

Middle Bakken facies were deposited on a low-inclined ramp system between storm-wave base 
(~200m water depth) and middle shoreface.

Facies A, B, C and the sandy interval were deposited during regression, while Facies D and E were 
deposited during transgression. The sandy interval is interpreted as channel fill or bar.

The upper portion of the Middle Bakken Member includes more dolomite content and micro-faults 
than the middle and lower portions and is usually favorable reservoir. Facies A and B generally has the 
lowest porosity and reservoir quality.

Intragranular, intergranular, fracture and moldic porosity are main pore types in the Middle Bakken 
Member. 

According to the isopach maps, the thicknesses of Facies A, B, C and sandy interval within Facies C 
were affected by Nesson Anticline and the thickness of Facies D was affected by Little Knife Anticline, 
while the structures might have not affected the thickness of Facies E.

The facies in the Middle Bakken Member have variable aspects and reservoir qualities throughout the 
North Dakota portion of the Williston Basin as explained above. That is why, the facies should be 
studied separately instead of studying the whole member simultaneously.

7. DIAGENESIS AND RESERVOIR QUALITY

Micritization
Mech. & Chem. Compaction
Calcite Cementation
Dolomitization
Pyrite Cementation
Microcrystalline Qtz Cement
Syntaxial Calcite Overgr.
Quartz Overgrowth
K-Feldspar Overgrowth
Dolomite Dissolution
Feldspar Dissolution
Dedolomitization
Fracturing
Anhydrite Cement
Hydrocarbon Migration

EARLY LATEMIDDLE

tectonic overpressure

Diagenetic Processes

1. Micritization

Micritization

200 μm

Micritization of grains in Facies B.
( Williams 25-36 1-H, 10695.2 ft.)

2. Mechanical and Chemical Compaction

100 μm

Mechanical 
Compaction

Mechanical Compaction as evidenced 
by cone-like stylolite structure
(State 36-1 2H, 10777.7 ft.) 

Calcite Cementation

100 μm

3. Calcite Cementation

Calcite cementation
(Olson 10-15 1H, 10619.7 ft.) 

4. Dolomitization

40 μm

Planar Dolomite

Nonplanar
Dolomite

Dolomitization Process. In the photomicrograph, a 
planar dolomite crystal and nonplanar 
microcrystalline dolomite are present. The planar 
dolomite crystal represents early-stage dolomitization, 
while the nonplanar dolomite micricrystals represent 
late-stage dolomitization.

(State 36-1 2H, 10768.8 ft., PPL)  

5. Pyrite Cementation

Blocky Pyrite 

100 μm

Pyrite cementation. In the photomicrograph, blocky 
pyrite is present.There are two importances of pyrite: 
1) Filling the voids in a rock decreasing porosity; 2) 
Representing anoxic environment conditions.

(Williams 25-36 1H, 10675.2 ft.) 

6. Microcrystalline Quartz Cementation

100 μm

Microcrystalline
Quartz Cement

7. Syntaxial Calcite Overgrowth

0.5 mm

Syntaxial Calcite Overgrowth

Syntaxial calcite overgrowth of
echinoderm fragments in Facies C.

(State 36-1 2H, 10777.7 ft., PPL)

Microcrystalline Quartz Cementation. The 
shape of the cement is an evidence of

(William 25-36 1-H, 10696.2 ft., XPL)

8. Quartz Overgrowth

100 μm

Quartz Overgrowth

Quartz Overgrowth in Facies C.
(State 36-1 2H, 10777.1 ft., XPL)

9. K-Feldspar Overgrowth

40 μm

K-Feldspar
Overgrowth

K-Feldspar overgrowth on plagioclase.
(State 36-1 2H, 10786.5 ft., PPL)

10. Dolomite Dissolution

40 μm

Dolomite
Dissolution

Dolomite dissolution. A 40-μm-planar dolomite crystal 
was dissolved creating secondary porosity.

(Williams 25-36 1H, 10673.9 ft., XPL) 

11. K-Feldspar Dissolution and
15. Hydrocarbon Migration

K-Feldspar dissolution and hydrocarbon migration. The 
spread black-colored structure hydrocarbon migrated 
from the Lower or Upper Bakken shale into the Middle 
Bakken member. K-Feldspar dissolution is present at the 
right-bottom part.

(Charlie Sorenson 17-8, 10475.2 ft.)

100 μm

K-Feldspar
Dissolution

Hydrocarbon Migration

12. Dedolomitization

40 μm

Dedolomitization

Dedolomitization in Facies D. In the photomicrograph, 
calcite cement replaces planar dolomite crystal.

(Williams 25-36 1H, 10695.3 ft., PPL)

13. Fracturing and
14. Anhydrite Cementation

0.5 mm

Anhydrite Cement

Fracturing process and Anhydrite cementation.
The cement fills the fracture decreasing
porosity in sandy interval.

(Charlie Sorenson 17-8, 10460.2 ft, XPL)

RESERVOIR QUALITY

- Point counting of 36 thin sections.
- The upper portion of the Middle Bakken interval generally includes the most dolomite content (up to 80%) 
and micro-faults increasing porosity and permeability.
- Porosity value ranging from 0.2% to 1.2% in point-counted samples but 4% to 8% in core plugs, sandy 
interval has the highest, lithofacies A and B have the lowest values.
- Lower portion does not have good reservoir quality because of cementation.
- Fracture, intragranular, intergranular and moldic porosity.

Paragenetic Sequence
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