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Abstract 

 

Higher diamondoids are composed of four or more face-fused diamond cages. Unlike the lower diamondoids, adamantane, diamantane and 

triamantane, higher diamondoids have a variety of structural isomers. There are four different tetramantane isomers found in petroleum, two of 

which are enantiomeric. There are nine pentamantane isomers of molecular weight 344, six of which are enantiomeric pairs. There are 39 

hexamantanes, but only one of which has a molecular weight of 342, the highly condensed cyclohexamantane. Here we show it is possible to 

use the relative concentrations and distributions of higher diamondoids to determine source in much the way biomarker sterane and terpane-

concentrations and distributions are used. Unlike biomarkers which are among the most thermally labile compounds in petroleum, diamondoids 

are for their molecular weight, the most thermally stable. As a result, unlike biomarker distributions, higher diamondoid distributions can be 

used to correlate hydrocarbon liquids of any thermal maturity. We will show (1) oil to oil, (2) oil to condensate, and (3) oil and condensate to 

source-rock correlations for a variety of samples, including condensates from liquids collected from highly-mature dry gas wells. Several 

examples representing various sources in both the US and Mexican Gulf of Mexico will be used to illustrate the application. 
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Correlating high-maturity fluids to source rocks  
is a difficult task.  



For Oil-Window Maturity Oils, identification of effective source rocks can be done 
very nicely with Biomarkers 
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Sterane Ternary Plot shows oil families. 
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Unfortunately, High-Maturity fluids are generally devoid of biomarkers. 

m/z 217 

More insidious is when a high-maturity gas condensate contains biomarkers. 



Peters and Moldowan, 1993 

High-Maturity Correlation 
Techniques 



Timan-Pechora Basin, Russia, (Peters and Moldowan, 1993).  

Figure 6.7 

Peters and Moldowan, 1993 
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Peters and Moldowan, 1993 



Tertiary marine, and Cretaceous marine organic-rich source rocks in Brazil. (from Guthrie 
et al., 1996) 

Peters and Moldowan, 1993 
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2MH + 2,3DMP (wt % whole oil)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

3
M

H
 +

 2
,4

D
M

P
 (

w
t 
%

 w
h
o
le

 o
il)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

K 1
=1.0

“Mango” C7 Parameters for Oil-Oil Correlation 



Diamondoid Concentration 
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Problem with biomarkers is illustrated in this diagram 
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This diagram also shows a possible solution. Work by 
Linda Schultz (2001) showed that diamondoids can be 
used to determine source. 



Like biomarkers, higher (4 cages or more) 
diamondoids come in a variety of isomers. 
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Four Tetramantanes  
– Each With a Different 3-D Shape 
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QEDA Tetramantanes 

Example from Eastern Europe 
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Mid Miocene source 

Jurassic source 

Possible mixes 



QEDA 
Tetramantanes 

Tetramantane Ternary Diagram for 
source correlation used similarly to a 

Sterane Ternary Diagram  
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There are  Nine Pentamantanes of Molecular Weight 344, 
C26H32 – Each with a Different 3-D Shape 
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Diamondoid concentrations can be used to correlate oils 
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Oils and Condensates in this study are from 
Smackover and Deep Tuscaloosa Trend, from 
Claypool and Mancini, 1989 AAPG-Bulletin. 

• Source known from geologic control 

• Smackover oils range from low-maturity 17oAPI (Toxey) to over 50oAPI 
(Hatters Pond).   

• Some Smackover liquids from Mobile Bay are not only highly cracked, 
they are TSR altered. 

• Tuscaloosa Trend condensates have C1/(C1-5) ratios for 0.94 to 0.99 



Diamondoid concentrations can be used to correlate oils 
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Selected oil samples from Venezuela differentiated by QEDA 
Various mixtures are analyzed to show application to unravel oil-mixtures 

C
o

n
c

e
n

tr
a

ti
o

n
 r

e
la

ti
v

e
 t

o
 t

ri
a

m
a

n
ta

n
e

 

L
o

g
 s

c
a
le

 

Tri 
T1 T3 P1 T2 

H1 
P4 P3 P2 

Tetra Penta Hexa 
-mantane 

Cretaceous  
End Member 

Tertiary 
 End Member 

Laboratory  
Mixtures 



Tr
ia

m
an

ta
n

e
 

Te
tr

a-
1

 

Te
tr

a-
2

 

Te
tr

a-
3

 

P
e

n
ta

-1
 

P
e

n
ta

-2
 

P
e

n
ta

-3
 

P
e

n
ta

-4
 

H
ex

a 

Extended Diamondoids, increasing molecular size → 

R
e

la
ti

ve
 c

o
n

ce
n

tr
at

io
n

, L
o

g 
sc

al
e

 

Banff, Miss. – Canada 

Red River, Ord. – US, MT 

U. Radcliff, Miss. – US, ND 

Basal Qz., L. Cret. – Canada 

Bakken, Dev-Miss. – Canada 

Quantitative extended diamondoid analysis (QEDA)  
Williston Basin oil-source correlation for cracked oil, black oil and mixes  



Compound Name

Adamantane 1

1-Methyladamantane 2

1,3-Dimethyladamantane 3

1,3,5-Trimethyladamantane 4

2-Methyladamantane 5

1,4-Dimethyladamantane(cis ) 6

1,4-Dimethyladamantane(trans ) 7

1,3,6-Trimethyladamantane 8

1,2-Dimethyladamantane 9

1,3,4-Trimethyladamantane(cis) 10

1,3,4-Trimethyladamantane(trans) 11

1,2,5,7-Tetramethyladamantane 12

Isotopic Analysis of Diamondoids 
Key to Diamondoids Measured (X-axis) CSIAD 
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Figure 1. Isotope ratios of diamondoids measured in Cretaceous and Tertiary-oil end-
members and their mixtures.  Slightly higher diamondoid concentrations in the Oligocene 
oil result in a weighted distribution favoring Oligocene isotope ratios in the mixtures.   



Diamondoid isotopes distinguish certain oil 
families in the Gulf of Mexico 
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Jurassic and Silurian Sourced Oils Are Distinguished using CSIA-D 
Middle East 

d
1

3
C

 ‰
 o

f 
ad

am
an

ta
n

es
  

Compound measured 

Jurassic 

Silurian 

Jurassic Oil Silurian 
Gas Mix 

-30.0 

-28.0 

-26.0 

-24.0 

-22.0 

-20.0 

-18.0 

1 2 3 4 5 6 7 8 9 10 11 12 



Conclusions 

• Higher diamondoid (4 cages and larger) distributions can be used to 
designate oil families and determine liquid hydrocarbon source rocks 
in much the same way biomarkers are used. 

• Unlike biomarkers, higher diamondoids are useful for liquids of any 
thermal maturity including high-maturity gas condensates.   
Condensates can be correlated to other condensates, to low maturity 
oils and/or to source rocks. 

• Diamondoid isotopes provide a complementary method of correlating 
high-maturity fluids. 

 


