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Abstract

Cyclical sedimentation patterns are common in unconventional resource shales, whether they be carbonate- or siliciclastic-dominated. In many
resource shales the cyclical patterns have been related to eustatic sea-level fluctuations, even though these fluctuations may sometimes be
obscured by tectonic overprint. The cyclicity is reflected in repetitive sedimentation patterns which represent alternating relatively
shallow/oxic- and deeper/anoxic-water deposition. Typical cyclicity might occur in the form of alternating clay/organic-rich and quartz/calcite-
rich strata. In more carbonate-rich sequences, organic-rich marls might alternate with organic-poor limestones. This cyclicity can occur at a
variety of stratigraphic scales and provides a sequence stratigraphic framework for mapping, correlation, and interpretations. Incised valley fill
may provide a localized, thicker, more organic-rich stratigraphic section (‘sweet spot’), than adjacent areas.

Within the context of geomechanics, these cyclical strata are termed ‘brittle-ductile couplets. Using the Barnett and Woodford shales as
examples, clay/organic-rich intervals tend to be relatively ductile (relatively low Young’s Modulus and high Poisson’s ratio), and cleaner
quartz/calcite-rich intervals tend to be relatively brittle (relatively high Young’s Modulus and low Poisson’s ratio). In carbonate-rich deposits,
such as the Eagle Ford Formation, re-crystallized, TOC-poor limestones tend to be stronger and more brittle than TOC-rich marls.

Within the context of microseismic, microseisms may be vertically stratified or layered, with some horizons containing more events than other
horizons. This stratification has been related to brittle-ductile couplets in at least one area, and placed within a sequence stratigraphic
framework.
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Within the context of geochemistry, ductile strata tend to contain more TOC and are thus better potential HC source rocks than brittle strata,
which contain less TOC. Biomarkers (geochemical fingerprints) are useful for interpreting sources and environments of deposition of organic
matter, and ultimately they are used for environmental zonation of shales.

Using these principles and observations, it is possible to build a sequence stratigraphic framework from multiple data sets to map and correlate
brittle and ductile strata, organic-/hydrocarbon-rich zones, and more fracturable stratigraphic intervals. A suggested horizontal landing zone is
the brittle strata within a brittle-ductile couplet. It is hypothesized that when hydraulically fractured, both brittle and ductile strata become
fractured, and hydrocarbons move from the ductile to the brittle zone, whose fractures remain open after proppant emplacement. With time,
ductile strata may close around the proppant and become sealed.
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E&Y: Unconventional resources largest source of US oil, gas
growth in 2013

02/10/2014 Qil and Gas J.

Unconventional resources in the US constituted the oil and
gas industry's largest source of growth in 2013—a trend
that's expected to continue into 2014, Ernst & Young
indicated in its US quarterly outlook. In the next 2-3 years,
the US will look to become a net exporter of gas, while
dramatically reducing its dependency on oil imports. "The
surge of the US energy market really was a game changer in
a relatively short time" said Deborah Byers, E&Y oil & gas
leader. "And we think those changes will continue to play
out in 2014." However, capital may move away from
unconventional plays with the possible freeing up of
Mexico's energy sector while additional f...

OTC, Houston, May, 2014, “The oil and gas industry
continues to unlock greater resources both onshore and
offshore— in shale formations and in deepwater. Growing
production from these areas, particularly in the US, is the
product of continuous innovation and the resources
contained in both will play a critical role in meeting growing
global energy demand.”

Innovation = Technology plus integration
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Woodford Shale Stratigraphy

(Upper Devonian - Lower Mississippian)
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Woodford Incised Valleys

Valley fill is thin where underlying Hunton is thick and vice versa
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Woodford Incised valley fills and karst fills = potential sweet spots (greater thickness/organic-rich)
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Geomechanics

WHAT IS BRITTLENESS???

BRITTLENESS is the

measurement of stored energy g Fracture Ductle

before failure, and is function of:
Rock strength
lithology
texture
effective stress
temperature
fluid type
diagenesis —
TOC

Fracture

Stress

BRITTLENESS INDEX (BI) is the
most widely used parameter for
the quantification of rock
brittleness.

14




An interval is classified (by drillers) to be:
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Mineralogic affect on rock fracturability (brittleness) (wang and Gale, 2009)
Bl = (Q + Dol + Lm)/ (Q + Dol + Lm + Cl + TOC)
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Mineralogic affect on rock fracturability (brittleness)

Bl = (Q + Dol)/ (Q + Dol + Lm + Cl + TOC)

Where Bl = brittleness index

Plastic deformation

Q = quartz ) Ductile
Cl=clay =
Dol = dolomite @
Lm = limestone (calcite)
TOC = Total organic carbon
(Wang and Gale, 2009)
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Upward-decreasing Gamma Ray = water depth of deposition must be decreasing with time, as rocks are deposited
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Ductile-Brittle Couplets: Barnett Shale example
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“Brittle-Ductile Couplets” Vertical fracture
(Slatt and Abousleiman, 2011)

Brittle = biogenic quartz rich B R e

‘ ' iShattered, recrystallized

(reservoir rock) diolaria

Ductile= clay-organic rich

Althoff, 2012
(HC source rock) °




Apply natural fracture distribution to hydraulic fracturing??

Brittle Rock

Ductile Shale

Proppant

Ductile Rock

e

Modified from Terracina et al., 2010

-Hydraulic fracturies propagate through brittle chert and ductile clay?

-Proppant goes into both brittle chert and ductile clay

-After fracturing, the fractures in chert remain propped open

Proppant embedment
in high clay content shale

(Howes, 2013, from Chang and Zoback, 2012)

imm

-But with time, the ductile beds encase proppant and close??




Bedding/Lamination planes are depositional, thus
planes of weakness

Laminae

Woodford



Brazilian Tensile strength Test Modified from Sierra et al., 2010
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Experimental Microseismic Survey

(Cabarcas and Slatt, 2014, Interpretation)

Observation Well 2
- Horizontal Array

L.,ﬁ'

Observation Well 1
= Vertical Array

Observation Well 3

[ ———] = Horizontal Array
o 200 400 ft

Treatment well

il

Treatquent well

Hydraulic ||

Typically — Tracture

| 500-1,500 ft

Monitor well

Injection well

Microseisms

e

Fracture

Not Woodford

(Warpinski, 2009)




Single stage, experimental fracture and microseismic job
Gamma ray log
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Barnett Microseismic
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The TOCpd for the top 10 shale-gas resource systems
14

. Jarvie, 2012
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Organic matter

More brittle

quantity is
determined
by the
total
organic
carbon
(%TOC)
content
(whole-rock
basis).

These data show the average TOCpd (present day) values for each system with the range of values, standard deviation, and
number of samples. Given the high thermal maturity of these shales, these values are indicative of the nongenerative organic

carbon (NGOC) values. TOCpd = present-day total organic carbon; stdev = standard deviation; n = number of samples.

Organic Geochemistry



Natural Gas (and oil)

Crude Oil Chromatogram

CH4: methane

d

_—1

L

_—1

Crude Ol

- C17

Pristane

_—1

_—1

L Phytane
MUL%L

General formula: [(Cn)(H@zn) + 2)]
Example: Propane = C3Hs




Chromatogram showing different terpanes. After Tommes-Parada, 2013
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Chromatogram showing different terpanes (bacterial, blue green algae, plants), etc.
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£ Marine carbonale
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Terpanes are a group of compounds derived from bacteria, blue-
green algae and plants. A chromatogram of the variety of
terpanes is shown in top figure. Terpanes can be used for typing
organic matter and depositional environment.

Steranes are used for evaluation of organic matter source,
maturity, and for correlations. They are derived from algae and

higher plants. Figure below is a C26-C28 ternary diagram containing
data from the Woodford (WDF) Formation, indicating a marine

source,
Torres-Parada, 2013

Ternary diagram of key steranes which provide an indicator of source rock and

depositional environment

Miceli-Romero, 2010



Geochemical Biomarkers for paleoenvironmental interpretation:
Woodford Shale

C30 20R Steranes/ Cpg Tricyclic/ Cpg Sterane/
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Geochemical logs showing different biomarker ratios for the quarry well (AIR = (C,,-C,,)/(C,4-C,,) 2,3,6-trimethyl substituted aryl isoprenoids).

Biomarkers can be used to indicate oxic vs. anoxic bottom water conditions during deposition



Sequence stratigraphy,
geomechanics, microseismicity,
and geochemistry relationships
in unconventional resource

shales

Roger M. Slatt, Carlos Molinares-Blanco,Jean
D.Amorocho, Carlos L Cabarcas, and Emilio Torres-
Prada

Geochemistry

Mineralogy/lithology

Stratigraphy and
stacking patterns

Depositional and diagenetic
environment and processes

Geomechanical and
seismic properties






