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Abstract

Wettability has a significant effect on hydrocarbon recovery from all types of reservoirs. Each reservoir has a wettability state that leads to
maximum recovery, but the initial wettability of a reservoir is usually not optimal. Traditionally, we have used surfactants and chemical
agents to try to optimize wettability and recovery, but this process is expensive and does not always produce the desired results. This talk will
outline the state of the science in wettability, as well as a methodology to realize the goal of maximum recovery.

This methodology changes wettability by changing water chemistry. This technique can be employed during normal waterflood operations in
conventional fields, or during hydraulic fracturing and completions in unconventional targets. This technique has several advantages
including substantially lower costs, ease of application and lower probability of negative outcomes. The successful approach to wettability
alteration requires several key steps: screening the fields to identify good candidates, simple laboratory techniques to evaluate the increased
recovery potential, economic evaluations to estimate costs and benefits, and finally, well-constrained predictive models to help design the
wettability-modifying fluids.

Examples from the Permian basin using the methodology described are presented. These include formations such as the Spraberry, Avalon
and Bone Springs. In conventional reservoirs that have favorable conditions incremental recoveries between 5 to 15% OOIP are possible and
given the relatively low CAPEX and OPEX many cases will be profitable. The application of this technique to unconventional resources is
still being explored, but offers the opportunity to increase initial flow rates and extend decline curves. While some current assumptions will
be refined as we become more knowledgeable, the basic idea, that we can alter wettability with water chemistry to optimize recovery seems
well justified.
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Conclusions

* Hydrocarbons wet rock surfaces through the water
film.

* We have a new experimental technique that rapidly
investigates wettability at the grain scale.

* Surface chemistry models will predict wettability.
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Applied Science

* Reservoir wettability is the equilibrium between rock, water and oil.
* Wettability 1s a function of salinity (total and composition).

* We can optimize reservoir wettability by changing salinity.
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Applied Aspect

Current world average recovery is 32% of OOIP.
Wettability is major control on oil mobility during waterflood.
Initial wettability is result of equilibrium
between rock, water and oil.
We can change water chemistry
on the reservoir scale (lab and field data).
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Wettability Alteration

* Chemical Flooding

e Surfactants

— Natural (pH alteration and production of natural
surfactants from oil)

— Artificial (manufactured) limited by salinity,
temperature, hardness and expensive $6-12/bbl.

— Salinity — laboratory observation?

© ESal
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Water Chemistry?

* Usually we think about
— compatibility and formation damage
— effect on additives

* But wettability 1s directly related to water chemistry.

* So any changes in water chemistry, change reservoir
wettability.

— e.g. - scale formation before re-injection during WF

© ESal
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Who 1s using this technique?

Successes (conventional, non-systematic)
BP - North Slope —flooding shallow SS field (15% OOIP).
Conoco-Phillips - North Sea —flooding deep chalk field (30% OOIP).
Shell - Syria —flooded SS field
(10-15% OOIP).
Pioneer - Spraberry SS (Iab) — 10% OOIP

Failures (conventional, non-systematic)
Independents - Wyoming —Minnelusa SS — no
Increase in recovery.

Stat Oil - North Sea —Stratfjord SS - minimal
response (<2% OOIP).

© ESal
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Wettability

the quality or state of being wettable : the degree to which
something can be wet
— Merriam-Webster Dictionary

Wettability or wetting 1s the actual process when a liquid spreads on
a solid substrate or material.
— Biolin Scentific

Wettability describes the preference of a solid to be 1n contact with
one fluid rather than another based on the balance of surface and
interfacial forces.

— Aldallah et al. 2007
A type of damage in which the formation wettability 1s modified,
generating a change in relative permeability that eventually affects
well productivity.

— Schlumberger Oilfield Glossary
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Wettability

“If your car 1s waxed, water runs off”
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Standard Wettability Formulation

O1l displaces water from the mineral surface
and then wets the mineral (surface binding) —
leads to calculation of disjointing pressure,
capillary force measurements, IFT, etc.
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Classic View of the Reservoir

Conceptual
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Computational
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What scale are we talking about?
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Figure 2. Sizes of moleaules and pore throats in siliciclastic rocks on a logarithmic scale covering seven orders of magnitude. Measurement methods are shown at the top of the
graph, and scales used for solid particles are shown at the lower right. The symbols show pore-throat sizes for four sandstones, four tight sandstones, and five shales. Ranges of
day mineral spacings, diamondoids, and three oils, and molecular diameters of water, mercury, and three gases are also shown. The sources of data and measurement methods
for each sample set are disaussed in the text.
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Measurements of Wettability

* Contact angle measurements
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Fig. 1. Schematic diagram of appamtus used to measure the contact angle.
Shedid and Ghannam 2004

(1) time = 1.0 min and contact angle = 117 deg. (i) time = 120 min and contact angle = 114 deg.
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Experiments to represent reservoir

' flow cell

flow clay layer oil drops
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Observations of Wettability
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FESEM images - Sands
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Lebedeva and Fogden 2011
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Moditied Floatation Test

* Modified Flotation Test
* Agerock in 3ml of oil (decane) for 48 hours, stir every 12 hours.
* Add brine to oil-rock mixture.
e Stir and allow 24 hours.
* Decant, dry, and weight fractions.

Gravity Separation

Age rock in oil Add brine
P —— <> o
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A From Mwangi and others, 2013
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Moditied Floatation Test

e  Modified Flotation Test

* Age 0.2 grams of rock in brine for 48 hours.
* Decant brine.

* Agerock in 3ml of oil (decane) for 48 hours, stir every 12 hours.
* Add brine to oil-rock mixture.

e Stir and allow 24 hours.

* Decant, dry, and weight fractions.

Adhesion
Age rock in brine ~ Decant brine Age rock in oil Add brine
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Observations

* Grains are carried up in the hydrocarbon
phase by adhesion between o1l phase and
rock surfaces (wettability).

* When rock is mixed with oil only, no
grains “float”.

* When rock 1s mixed with water first, grains
“float”.

© ESal
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Alternative Wettability Formulation

The electrostatic attraction between surfaces and oil
cause the surface to become “oil-wet”, however there
1s still a very thin water film. The scale of interaction
1s that of the double layer, 1 to 10 nm.
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Esal Worktlow

* Screening

— empirical basis .
— water source assessments
* Scoping s000

— modified Kinder-Morgan model
— multiple economic evaluations

* Experiments
— rapid scan to find optimum chemistry ., g,, o
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— assess fluid-fluid-rock interactions
— design optimum fluid and avoid formation damage

— water treatment requirements
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Engineered Salinity - Advantages

* Incremental Production (5-15% OOIP) is similar to other
techniques (Thermal, Chemical, CO,, Microbial).

* Response is rapid (3-9 months).

* Cost of field test 1s low.

* Works 1n both clastic and carbonate reservoirs.

* CAPEX 1s low compared to typical EOR.

— No steam plant or recycling plant.
— No replacement of tubing and pipe.

e OPEX is low

* No expensive chemicals.
* No change in operations.

* Water treatment can be designed to remove scale and improve
injectivity in addition to changing wettability.

© ESal
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Why the Permian Basin?

* (3Good resource information.

* Multiple targets, both conventional and
unconventional.

* Producers are smaller, more agile, more prone
to adopt and try something new (not the
majors).

© ESal
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Screening the Permian Sandstones

Bone Spring and Spraberry = good targets.

Targets for Consortium Research (Screening and
Design)

* Delaware Basin - Delaware group, Bone Spring
* Midland Basin — Spraberry (Jo Mill)

© ESal
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Screening the Permian Sandstones

Avalon, Bone Spring and Spraberry
Sandstones.

Permian SS Fields Screening
100

90

80 -

Screening Score

OESal
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Scoping

e Estimate the cost and benefit.

— Potential Costs -
* Water Treatment
 Installation
* Equipment Operation and Maintenance

— Benefits - production estimated with empirically-based
equations using:
* Reservoir geology
* Production water chemistry
* Oil chemistry
* Oi1l Price

© ESal
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Wettability Modification — Economic

Engineered Salinity

Examples
Field Size Wells | Recovery | Project | CumPreTax
(BBLS) (#) (% OOIP) (Y) ($M)
Nugget3 | 127,744,810 19 5 25 250.3
10 668.8
15 1100.6
Nugget2 | 46,115,627 18 5 30 86.5
10 238.5
15 398.0
Almond 40,486,587 125 5 9 82.0
10 216.1
15 356.3
Mesaverde 2| 16,025,030 59 5 25 339
10 86.9
15 142.3
Nugget 1 9,617,523 10 5 10 18.5
10 50.2
15 83.7
Mesaverde 1 584,783 4 5 30 1.2
10 3.1
15 5.1




What about Unconventionals?

* Optimize wettability to conserve reservoir
energy for hydrocarbon movement.

e Water control — minimize water movement
(flowback and produced water).

* Prevent formation damage.
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Engineered Salinity — Unconventional Advantages

* Typical slickwater frac — fresh water containing a friction
reducer, biocide, surfactant, breaker or clay control
additive — commonly used in gas wells.

* Currently use fresh water that does not produce optimal
wettability, better choice 1s treated brackish water.

* Blending base fluid from multiple source waters.
— Existing wells in other zones
— Adding water source wells to field

e Other Practical Considerations.

— Produced water source reuse
— Water Treatment options

— Disposal of reject streams

— Regulatory issues.

© ESal
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Questions?

www.esalinity.com





