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Abstract 

 

Source rocks expel oil and gas when the internal pressure generated by volume-increase reactions due to the conversion of 

kerogen to solid bitumen and then to oil and gas exceeds the geostatic pressure. The rocks naturally rupture, oil and gas are 

expelled or pushed out, and the pressure drops below geostatic. This process is repeated many times as the source rock 

passes through the oil and gas maturity “windows.” Primary oil and gas expulsion is very inefficient with less than twenty 

percent of the oil and gas generated ever leaving the source rock.  

 

Unconventional reservoirs are most commonly suspended oil source rocks. They were once active but stopped generating 

prior to becoming spent due to cooling associated with overburden removal. Internal pressure is between hydrostatic and 

geostatic, depending on sealing capacity and other factors. Hydrocracking artificially ruptures the source rock and some 

additional oil and gas are pulled out by differential pressure between the source rock and the well bore. Like primary oil 

migration, the process is very inefficient and less than ten percent of the oil and gas remaining in the source rock is produced. 

 

Many factors control the efficiency of both natural oil expulsion and artificial fracking oil and gas production. Some of these 

include the concentration and distribution of organic matter in the source rock, the anisotropy of both the organic matter and 

lithological units within the source rock, the brittleness variations of source-rock lithologies, natural and artificial frac 

barriers, oil and gas composition at various maturities, differential permeability of produced products, and a host of other 

factors which affect the efficiency of both source rocks and unconventional reservoirs. 
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NATURAL AND ARTIFICIAL CRACKING 
OF OIL SOURCE ROCKS AND 

UNCONVENTIONAL RESERVOIRS 



IT’S ALL ABOUT CRACKS (IN ROCKS) 

“How did I get roped into this talk anyway?”  
They found an old geezer who can’t run very fast! 



A SHORT PRIMER ON ROCK CRACKS 

1) All rocks crack. 
 

2) Some rocks crack better than others. 
 

3) Primary oil migration cracks rocks from within. 
 

4) Tectonic forces crack rocks from without. 
 

5)  Most secondary oil/gas migration occurs in rock cracks. 
 
6)  It is easier to open old cracks than make new ones. 

 
7)  Rock cracks are very important in oil/gas production. 

 
 

 



BUT FIRST WE NEED TO REVIEW  
A FEW FRACTURE BASICS 

With apologies to Geertsma & Klerk, 1969 

+ a VI-tR' {tn[ 1- , (f •• )]+2} 
I - V 1 f.~' f. a 

+ a VI-tR' {tn[ 1- , (f •• )]+2} 
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I - V 1 f.~' f. a 

+ a VI-tR' {tn[ 1- , (f •• )]+2} 
I - V 1 f.~' f. a 



JUST KIDDING! 
I never got past Einstein. 

 
 

We should all be happy there are folks out there who can do the math. 
 
 



ORIGINS OF ROCK CRACKS 
 AKA: FRACTURES, FISSURES, PARTINGS, & JOINTS 

1) Oil generation & primary migration 
2) Tectonic stresses 
      a) Fault systems 
      b) Flexures 
      c) Impact craters 
      d) Collapse features (salt, karst) 
      e) Differential compaction 
3) Pressure (stress) release due to overburden 

removal 
4) Pressure (stress) release due to coring 
5) Hydro-fracking                        
                                                    Natural 
                                                         Artificial                                                              
                                                     
 



WHY DO WE CARE ABOUT 
NATURAL CRACKS ANYWAY?  

 

Hydro-fracking is what breaks up the rocks 
and lets the oil and gas flow out, and…………… 
 
Because it takes half the pressure to re-open 
sealed natural cracks than to make new ones. 
 
Because wells with many natural cracks   
produce better than those with few or none. 
 
 
 
 



Gale et al., 2010 
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…….. my source rock is  
       now my reservoir! 

When conventional oil source rocks  
became unconventional reservoirs,  
geochemists learned more about 

them than ever before. 
 

Anyone care to guess why? 

Quinn R. Passey et al, 2012 

Calvin and Hobbs by Bill Watterson 

(Well…..sort of anyway) 

CONVENTIONAL  SOURCE  ROCKS = 
UNCONVENTIONAL  RESERVOIRS  

 



Bakken and Woodford unconventional 
petroleum systems – not only source rocks 

Grau and Sterling, 2011 Krystyniak, 2005 
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PAN AMERICAN HOVE # 1 
UPPER BAKKEN SHALE, 1967 

http://homepage.usask.ca/ 

IP ~ 750 bopd, D & A in < year 
Vertical well, no frac or prop.  



THE DEFINITION: 
 
Most unconventional reservoirs  are suspended  oil 
source rocks – once active but stopped generating 
prior to becoming spent. 
 
 
THE QUESTION: 
 
How did oil source rocks expel oil/gas and how do  
we get them to give up some of the oil/gas which 
remains? 

UNCONVENTIONAL RESERVOIRS 
DEFINITION AND CHALLENGE 



 
 

 Source Rock – Generated and expelled enough oil or 
gas to form commercial accumulations. 
 

 Active Source Rock – Actively generating oil or gas. 
 

 Suspended  Source Rock - Once active but has stopped 
generating prior to becoming spent. * 
 

 Spent Source Rock – Completed the oil and or gas 
generation process. 
 

 * Usually due to cooling associated with overburden removal. 

Dow, 1977 



 
 

 Potential Source Rock – Capable of generating enough 
oil or gas to form commercial accumulations, but has 
not yet done so due to thermal immaturity.  

                                              
                                              Potential: 
                                                  Possible, not active,  
                                                  capable of becoming. 

Don’t let a 
little hang-up 
get you down. 

Dow, 1977 



CORRELATION OF VARIOUS MATURATION INDICES AND  
ZONES OF PETROLEUM GENERATION AND DESTRUCTION 
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Little or no Heat 

HOW OIL SOURCE ROCKS  
FORM AND FUNCTION 

Living Organic Material – Unstable after death 

Kerogen - Chemically Stable 

Oil & Gas - Thermally Stable  

Low to  
High Heat 

Svara
Typewritten Text

Svara
Typewritten Text

Svara
Typewritten Text
Dow, 2011



 
Organic Matter Types that have High  
Hydrogen Contents  make Crude Oil  

- and Most Natural Gas! 
 

“Oil-prone source rocks comprise sediments that are 
high in organic carbon and contain organic material 
sufficiently hydrogen rich to convert mainly to oil 
during catagenesis. Such organic materials include  
plankton, algae, spores, pollen, leaf cuticle, tree resin, 
and anaerobic bacteria.”     
                      
 
                                                                                   Passey et al., 2010 



Solid Bitumen 

HOW ARE OIL & GAS MADE 
FROM PLANT/ANIMAL REMAINS? 

Living Organic Material – Unstable after death 

Kerogen - Chemically Stable 

Oil & Gas – Thermally Stable 



SOLID BITUMEN IS SQUEEZED INTO  
PORES & FRACTURES DURING EARLY 

OIL GENERAION (0.5 - 0.6% Ro) 
 

Hand from Perez 
& Marfurt, 2013 

Dow, 2012 



Pre-oil generation Woodford Shale Early oil generation Woodford Shale 
with solid bitumen in fractures 

M. D. Lewan 

THIN SECTIONS COMPARING  
IMMATURE AND EARLY MATURE 

WOODFORD SHALE SOURCE ROCK 



CALCITE 



SOLID  BITUMEN  IN  
REFLECTED LIGHT MICROSCOPY 

(WHOLE ROCK MOUNTS) 

Solid bitumen in 
matrix porosity  

Massive textured 
amorphous O. M.  

Not Migrated  Migrated 

W. Dow 



CONCEPTUAL MODEL OF 
OIL AND GAS GENERATION - 1 

 Organic-rich source rocks are exposed to heat 
during burial. 
 

 A portion of the kerogen is converted solid 
bitumen and then to oil and gas.  
 

 This results in a volume increase [and gas 
generation]  which increases the porosity and 
internal pressure of the source rock. 

Momper, 1979 



Berg & Gangi, 1999 

CONVERSION OF KEROGEN TO OIL 
IS A VOLUME AND PRESSURE  

INCREASE REACTION 



OIL SHALE RETORT PRODUCTS 
IN THE LABORATORY 

Allred, 1967 



KEROGEN 

SOLID BITUMEN 

OIL 

OIL 

SOLID BITUMEN 

KEROGEN 

SOLID BITUMEN 

OIL 

KEROGEN 

KEROGEN, SOLID BITUMEN, 
AND OIL IN REFLECTED LIGHT 

High TOC oil source rock, 0.75% Ro,  
dried out core, asphaltic oil residue preserved. 



CONCEPTUAL MODEL OF 
OIL AND GAS GENERATION - 2 

 When the pressure exceeds geostatic, the rock ruptures, 
oil and gas are expelled, the fractures close, and the source 
rock returns to near pre-generation porosity and pressure. 
 

 This process is repeated many times as the source rock 
passes through the oil and gas generation maturity 
“windows”.  
 

 Oil expulsion is very inefficient and ~80% of the oil 
generated never leaves the source rock (unconventional 
reservoirs) and ultimately is converted to condensate and 
then to wet gas, dry gas, and finally graphite. 
 

 
 

Momper, 1979 



AAPG Distinguished Lecturer, Jim Momper, 1979 

NOTIONS OF SOURCE ROCK 
PRESSURE COOKERS 
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Ungerer et al., 1983 

PRIMARY MIGRATION OCCURS 
ALONG BEDDING AND CRACKS 



Loucks, 2009 

PRIMARY MIGRATION OCCURS 
ALONG BEDDING AND CRACKS 

Kerogen/Bitumen 
In Laminations  

& Fractures 



Gale, et at, 2007 

NATURAL CRACKS IN SHALE 

Gale, 2013 

New Albany Shale 



   SHALE HETEROGENEITY AND ANISOTROPY 

Momper, 1979 

MATTE R
RIC H 

PEAK GENERATION 

CONVENTIONAL CORE 

ALONG C -AXIS .1 to bedding 
x - RAY : Preferred Orientation of Claye 
SEM : Well -packed Arrangement of 

Overlapping. Stacked • Leaves ' 

ALONG A - & 8 -AXES II to bedding 
X - RAY : Random Clay Orientation 
SEM : Open Flaky Texturo ; 

Fissility Evident 

'- Preferential Fluid-Migration 
Directions 

MATTE R
RIC H 

PEAK GENERATION 

CONVENTIONAL CORE 

ALONG C -AXIS .1 to bedding 
x - RAY : Preferred Orientation of Claye 
SEM : Well -packed Arrangement of 

Overlapping. Stacked • Leaves ' 

ALONG A - & 8 -AXES II to bedding 
X - RAY : Random Clay Orientation 
SEM : Open Flaky Texturo ; 

Fissility Evident 

'- Preferential Fluid-Migration 
Directions 

MATTE R
RIC H 

PEAK GENERATION 

CONVENTIONAL CORE 

ALONG C -AXIS .1 to bedding 
x - RAY : Preferred Orientation of Claye 
SEM : Well -packed Arrangement of 

Overlapping. Stacked • Leaves ' 

ALONG A - & 8 -AXES II to bedding 
X - RAY : Random Clay Orientation 
SEM : Open Flaky Texturo ; 

Fissility Evident 

'- Preferential Fluid-Migration 
Directions 

MATTE R
RIC H 

PEAK GENERATION 

CONVENTIONAL CORE 

ALONG C -AXIS .1 to bedding 
x - RAY : Preferred Orientation of Claye 
SEM : Well -packed Arrangement of 

Overlapping. Stacked • Leaves ' 

ALONG A - & 8 -AXES II to bedding 
X - RAY : Random Clay Orientation 
SEM : Open Flaky Texturo ; 

Fissility Evident 

'- Preferential Fluid-Migration 
Directions 



http://csegrecorder.com/ 

Maximum stress 

Minimum 
 stress 

Tensile crack Shear cracks 

HOW SHEAR AND TENSILE CRACKS FORM 



Fluorescent light  
with solvent. Fluorescent light. White light 

SLABBED CORE PHOTOS 

W. Dow 



CRACK ENHANCEMENT WITH SOLVENT 
5 Seconds.                               60 Seconds.                               

W. Dow 



Bedding plane partings and high angle shear fractures. 

SOLVENT ENHANCED CRACKS 

W. Dow 

Next 
slide 



Fluorescent in bedding plane partings and high angle stress cracks. 

SOLVENT ENHANCED CRACKS 

W. Dow 



WILLISTON BASIN BAKKEN OILS 

Dow, 1972 
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Dow, 1972 

WILLISTON BASIN BAKKEN OILS 

Why no  
oil here? 

Why no  
oil here? 



Dow, 1972 

WILLISTON BASIN BAKKEN OILS 



Gudmundsson, 2000 

1)   Faults form when shear cracks link up. 
 
2)   Damage zone forms and pores and cracks get interconnected. 
 
3) Damage zone becomes very permeable.  

 
4) Permeability is controlled by the local stress field. 
 

Tectonor 

PERMEABILITY OF FAULT ZONES 



WILLISTON BASIN SHEAR FAULTS 

The Williston Basin contains many: 
 
1) Basement controlled faults 
2) Periodically active entire stratigraphic column. 
3) Affects deposition, salt solution, etc. 
4) Expressed as surface lineaments. 
 
    



Grau & Sterling, 2011 
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Bakken 

Madison 

 BAKKEN OIL LATERAL MIGRATION 
OCCURS IN FAULT - FRACTURE ZONES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Charles Salt 



TRUE OIL, RED WING CREEK IMPACT 
CRATER, WILLISTON BASIN, N.D. 

1600’ oil column in highly fractured & brecciated tight 
Mission Canyon carbonate in the central uplift area. 
Bakken source rocks. Produced 17 million bbl oil and 700 
mmcf gas from 26 wells since 1972. 
 
                                                                 

Barton et al., 2010 



HOW DO OUTCROP CRACKS RELATE  
TO SUBSURFACE CRACKS. 

They can provide some idea how different lithologies 
will crack, but overburden (stress) removal and  
weathering can result in many more types of cracks  
than are present in the subsurface. 



UPPER FAYETTEVILLE, ARKANSAS 

Dow, 2005 

Quartz Bed 

Shale Beds 

Lime Beds 



Dow, Miller, Lewan, 2011 

WOODFORD OUTCROP, I 35 ROAD  
CUT, ARDMORE BASIN, OK 



WHAT DO ARTIFICAL HYDRAULIC 
CRACKS REALLY  LOOK LIKE? 

Nobody really knows but there are many ideas. 
Most of the illustrations were made by artists,  
not scientists. 



NOT LIKELY ANY OF THESE! 

? 



MINEBACKS ARE NOT A GOOD  
ANALOG FOR UNCONVENTIONAL 

RESERVOIR CRACKS BECAUSE: 

Temperature is too low. 
Pressure is too low. 
Stress field is wrong. 
Lithology is different. 

- But you can see cool sand-filled cracks 



Kevin Fisher, Halliburton 

PROPPED HYDRAULIC CRACKS IN 
 SANDSTONE, NEVADA TEST SITE 



CORED HYDROFRACS ARE NOT   
ALWAYS USEFUL BECAUSE THE  

SAND PACK TENDS TO FALL OUT.  

But you can identify artificial cracks because  
they can contain hydrofrac chemicals. 

 
 

Here’s an idea! 
 

May be a large service company should put 
together a multi-client project to core and  
study a hydrofrac’ed zone in a played-out 

unconventional reservoir! 



K. Fisher after Warpinski et al., 1993 

CORED HYDRAULIC CRACKS 
IN PALUDAL MESAVERDE SAND 

• 31 fracture strands over 4 
ft interval 
- Vertical fractures 
- Proppant washed out 

during drilling 
• 55° well deviation 
·7150 ft TVD 
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HYDRAULIC FRACTURING MODEL 

F. Javadpour, 2014 



Greatest crack density is 
within 50 m of lateral. 

F. Javadpour, 2014 



CRACK INTENSITY DECREACES  
AWAY FROM POINT OF ORIGIN 

IN ROCKS AND GLASS ALIKE 



Daneshy, 2013 

CRACK GROWTH PATTERN TYPES 



BASIC CRACK TYPES 

Simple – longest, most conductive, 
least surface area. 

Complex – shortest, least conductive, 
most surface area. 



Dow, Miller, Lewan, 2011 

Simple Off balance 

Complex 

WOODFORD OUTCROP SILICEOUS  
SHALE FRACTURE TYPE ANOLOGY 



Google Earth, 2012 

SIMPLE – longest, fastest, least access. 

COMPLEX – shortest, 
 slowest, most access. 

OFF BALANCE - transitional. 

ROAD FRACTURE TYPE ANOLOGY. 



Dally, 2014 

TREND IS TOWARD FOCUSED, HIGH 
DENSITY COMPLEX FRACS 
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UNCONVENTIONAL OIL 
RESERVOIRS NEED: 

 
1) Maturity between ~ 0.9 and 1.2% Ro for gas drive. 
 
2)  High TOC and hydrogen-rich kerogen. 
 
3)  Rock matrix porosity for oil storage. 
 
4) Frac-able silica or carbonate rock for    
     permeability. 
 
5)  Overpressure is a good thing. 
 
6)  Natural fracturing helps. 
 
 



EMBRACE ROCK CRACKS! 
 

THEY ARE YOUR FRIENDS. 




