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Abstract

As the amount of architectural data collected in sedimentological studies, and typically rendered available in published form, has increased
over time, so a fundamental issue has become ever more important: the need to ensure that different datasets collected in different ways by
different geologists (e.g. 2D architectural panels, 3D seismic surveys) are stored in a format such that analysis or synthesis of fundamentally
different types of data can be made in a sensible and informative manner, without requiring extensive literature search and re-processing.
Database systems are here proposed as a means for achieving the convergence of datasets in a common medium. The proposed database
approach permits the digital reproduction of sedimentary architecture in tabulated form: hard and soft data referring to depositional products
are assigned to standardized genetic units belonging to different scales of observation, which are themselves contained within stratigraphic
volumes classified on deposystem parameters (e.g. subsidence rate, physiographic setting). Although the approach has general applicability,
two different databases have been independently developed to capture the peculiarities associated with fluvial and deep-marine depositional
systems. Through interrogation, the two database systems return output that — being in quantitative form and referring to standardized
sedimentary units — is suitable for both synthesis and analysis. Deposystem classification permits data to be filtered on the parameters on which
the systems are classified, allowing the exclusive selection of data associated with systems deemed to be analogous to a given subsurface
succession in terms of deposystem boundary conditions and environmental setting. Alternatively, the quantification of architectural properties
permits users to identify analogy in terms of sedimentary architecture. Outputs from the two databases are here presented in forms suitable for
highlighting differences in the way fluvial and deep-water architecture is conceptualized and implemented, and for presenting ways in which
analog information can be employed for the characterization and prediction of fluvial and deep-water reservoirs. Specific example applications
include the use of database output to (i) generate quantitative facies models with which to guide core interpretation, (ii) to constrain stochastic
reservoir models, and (iii) to guide well correlation of fluvial or deep-marine sandstones.


mailto:eelc@leeds.ac.uk

FRG

44

Digital reproduction of clastic sedimentary architecture by means of relational databases

Luca Colombera, Marco Patacci, Nigel P. Mountney, William D. McCaffrey — Fiuvial Research Group & Turbidites Research Group — University of Leeds, UK

UNIVERSITY OF LEEDS

ABSTRACT

As the amount of architectural data collected in sedimentological studies, and
typically made available in published form, has increased over time, so a
fundamental issue has become ever more important: the need to ensure that
different datasets collected in different ways by different geologists (e.g. 2D
architectural panels, 3D seismic surveys) are stored in a format such that analysis
or synthesis of fundamentally different types of data can be made in a sensible and
informative manner, without requiring extensive literature search and re-
processing.

Database systems are here proposed as a means for achieving the
convergence of datasets in a common medium. The proposed database approach
permits the digital reproduction of sedimentary architecture in tabulated form: hard
and soft data referring to depositional products are assigned to standardized
genetic units belonging to different scales of observation, which are themselves
contained within stratigraphic volumes classified on deposystem parameters (e.g.
subsidence rate, physiographic setting). Although the approach has general
applicability, two different databases have been independently developed to
capture the peculiarities associated with fluvial and deep-marine depositional
systems.

INTRODUCTION

Here we present a relational-database methodology aiming at hosting the steadily growing body of
architectural data collected in sedimentological studies and made available in published form. In

relational databases are here proposed as a means for achieving the convergence of datasets in a common
medium, whereby the digital reproduction of sedimentary architecture is obtained by means of tables storing
hard and soft data referring to depositional products assigned to standardized genetic units, which are
themselves contained within stratigraphic volumes classified on deposystem parameters (e.g. subsidence
rate, physiographic setting). Although the approach has general applicability, two different databases have
been independently developed to capture the peculiarities of fluvial and deep-marine depositional systems:
the Fluvial Architecture Knowledge Transfer System (FAKTS) and the Deep-Marine Architecture Knowledge
Store 2 (D-MAKS 2). The necessity to collate different datasets that were originally collected in different ways
by different geologists (e.g. 2D architectural panels, 3D seismic surveys) is tackled by dataset standardization:
standards are established to ensure unequivocal attribution of each genetic unit to a category in both a

hierarchical scheme and a classification scheme. Referring to our in-house standards, all datasets are

in a format such that analysis or synthesis of fundamentally different types of data can be made in a sensible Int ti QUANTITATIVE
and informative manner. Through interrogation, the two database systems return output that — being in nterrogation INFORMATION
quantitative form and referring to standardized sedimentary units — is suitable for both synthesis and analysis.

Deposystem classification permits data to be filtered on the parameters on which the systems are classified, 7 ~
allowing the exclusive selection of data associated with systems deemed to be analogous to a given / \

subsurface succession not just in terms of architectural properties, but also in terms of deposystem boundary

conditions and depositional setting.

SCOPE Here we aim at demonstrating how our relational-database technique for the digitization of
sedimentary architecture can be applied to subsurface interpretations and predictions of fluvial and

marine reservoirs. The approach is illustrated highlighting differences in the way fluvial and deep-water
architectural features are conceptualized and implemented; output analog information is specifically employed

for the (i) generation of quantitative facies models that can be used to guide core interpretation,

constraining stochastic pixel- and object-based reservoir models, and for (iii) guiding well correlation of

potential reservoir-quality sandstones.

Through interrogation, the two database systems return output that — being in
quantitative form and referring to standardized sedimentary units — is suitable for
both synthesis and analysis. Deposystem classification permits data to be filtered
on the parameters on which the systems are classified, allowing the exclusive
selection of data associated with systems deemed to be analogous to a given
subsurface succession in terms of deposystem boundary conditions and
environmental setting. Otherwise, the quantification of architectural properties
permits users to identify analogy in terms of sedimentary architecture.

Output from the two databases is presented with the aims of illustrating the
approach highlighting differences in the way fluvial and deep-water architecture is
conceptualized and implemented, and of presenting ways in which analog
information can be employed for the characterization and prediction of fluvial and
deep-water reservoirs. Specific example applications include the use of database
output to (i) generate quantitative facies models with which to guide core
interpretation, to (ii) constrain stochastic reservoir models, and to (iii) guide well
correlation of fluvial or deep-marine sandstones.
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FAKTS GENETIC-UNIT HIERARCHY

Each case study is subdivided into a series of stratigraphic volumes (subsets) characterized by having the
same system attributes. Each subset is broken down into sedimentary units, belonging to the different scales
considered, recognizable as lithosomes in ancient successions —in both outcrop and subsurface datasets —
and as geomorphic elements in modern river systems. The tables associated with these genetic units
contain a combination of interpreted soft data (e.g. object type) and measured hard data (e.g. thickness and
other dimensional properties).

Every single object is assigned a numeric index that works as its unique identifier; these indices are used to
relate the tables (as primary and foreign keys) reproducing the nested containment of each object type within
the higher scale parent object (depositional elements within subsets, architectural elements within
depositional elements, facies units within architectural elements).
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FAKTS GENETIC-UNIT SPATIAL RELATIONSHIPS

The same numeric indices that are used for representing containment relationships, are also used for object
neighboring relationships, represented within tables containing transitions in the vertical, cross-gradient and
along-gradient directions. The hierarchical order of the bounding surface across which the transition occurs is
also specified at the facies and architectural element scales; the bounding surface hierarchy proposed by
Miall (1996) has been adopted.

FAKTS DATABASE OVERVIEW

FLUVIAL CASE-STUDY
CLASSIFICATION

One of the key aspects of the FAKTS database is the
classification of each case study example and parts
thereof on the basis of traditional classification
schemes or intrinsic environmental descriptors (e.g.
dominant transport mechanism, channel/river
pattern, relative distality of each stratigraphic
volume), external controlling factors (e.g. description
of climatic and tectonic context, subsidence rates,
relative base-level changes), and associated
dependent variables (e.g. basin vegetation type and
abundance, suspended sediment load component).
Some of these attributes are only expressed as
relative changes (=, -, +) in a given variable (e.g.
relative humidity) between stratigraphic or
geomorphic segments, which are implemented as
subsets. In addition, FAKTS stores all the metadata
that refer to whole datasets, describing the original
source of the data and information including the
methods of acquisition employed, the
chronostratigraphic stages corresponding to the
studied interval, the geographical location, the names
of the basin and river or lithostratigraphic unit, and a
dataset data quality index (DQI), incorporated as a
threefold ranking system of perceived dataset quality
and reliability based on established criteria.
Moreover, subsets are classified according to their
suitability for a given query (i.e. for obtaining
dimensional parameters, proportions, transitions or
grain-size data) for a specified scale (target scale).
Some example categories on which the stratigraphic
volumes are classified are included in the partial list of
attributes for the ‘subsets’ table, on the right.
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Abovelleft: hypothetical example illustrating how
transitions between neighboring architectural

FAKTS GENETIC UNITS

Depositional elements are classified as channel-complex or floodplain elements. Channel-complexes
represent channel-bodies defined on the basis of flexible but unambiguous geometrical criteria, and
are not related to any particular genetic significance or spatial or temporal scale; they range from the
infills of individual channels, to compound, multi-storey valley-fills. This definition facilitates the
inclusion of datasets that are poorly characterized in terms of the geological meaning of these objects
and their bounding surfaces (mainly subsurface datasets).

Floodplain segmentation into depositional elements is subsequent to channel-complex definition, as
floodplain deposits are subdivided according to the lateral arrangement of channel-complexes.
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Above: examples of stacked floodplain and channel-complex depositional elements from the Farrer Formation in the

Book Cliffs area (Utah).

M Legend | Architectural element type
CH Aggradational channel fill
DA Downstream-accreting macroform
LA Laterally accreting macroform
DLA Downstream- & laterally-accreting macroform
SG Sediment gravity-flow body
HO Scour-hollow fill
Abandoned-channel fill
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FAKTS can be interrogated through SQL queries in order to generate

BASIC FAKTS OUTPUT
GENETIC-UNIT DIMENSIONS

quantitative information on fluvial architecture; this information can be

exported to spreadsheets, analysed and represented in a variety of

forms.

GENETIC-UNIT PROPORTIONS

The internal organization of genetic packages can be characterized in

terms of the objects belonging to lower-order scales.

Information on their composition is given by the relative volumetric
proportions of their building blocks. For example, the internal composition
of channel-complexes or floodplains in terms of architectural elements,
and of architectural elements in terms of facies units (as shown in the pie-
charts) can be derived by estimating volumetric proportions by object
occurrences only, or by combining occurrences and dimensions in a
variety of ways; variably defined net:gross ratios can then be easily

computed for each genetic-unit type.

FAKTS permits the derivation of dimensional parameters of genetic-unit types; from
this output it is possible to readily derive descriptive statistics or probability density
functions of given geometrical parameters or cross-plots of aspect ratios (e.g.
width/thickness, width/length), choosing whether to include or not underestimated
(partial and unlimited) and overestimated (apparent) dimensions. It is also possible to
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ARCHITECTURAL ELEMENTS

Following Miall’s (1985, 1996) concepts, architectural elements are defined as
components of a fluvial depositional system with the characteristic facies associations
that compose individual elements interpretable in terms of sub-environments.

FAKTS is designed for storing architectural element types classified according to both
Miall's (1996) classification and also to a classification derived by modifying some of
Miall’s classes in order to make them more consistent in terms of their geomorphological
expression, so that working with datasets from modern rivers is easier. Architectural
elements described according to any other alternative scheme are translated into both
classifications following the criteria outlined by Miall (1996) for their definition.
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FAKTS can be queried to derive data on occurrences of transitions between genetic
units, in order to obtain a quantitative description of spatial depositional trends.

To further characterize genetic units internally, transition statistics can be filtered so that
only transitions observed within the type of depositional or architectural element

obtain output for relative dimensional parameters of adjacent genetic units (e.g.
channel-fill thickness/levee thickness ratio), belonging to the same hierarchical scale
or to different scales, as genetic unit sizes, juxtaposition (in form of transitions) and
scale-nesting are all digitized.
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investigated and across given bounding-surface orders are taken into account.

To obtain meaningful 1D transition statistics, 2D- and 3D-dataset transitions can be
filtered through a special query that performs random selections in order to force the
sampling to be one dimensional.

UPWARD TRANSITIONS
Lateral and vertical transition AC

FF Overbank fines

SF Sandy sheetflood-dominated floodplain
CR Crevasse channel

CS Crevasse splay

LC - Floodplain Lake

C Coal-body
Undefined elements

Code |Legend |Lithofacies type

Gravel to boulders - undefined structure

:

Gmm Matrix-supported massive gravel

Gmg Matrix supported graded gravel

Gem
Goi
Gh

Clast-supported massive gravel

Clast-supported inversely-graded gravel

Horizontally-bedded or imbricated gravel

Trough cross-stratified gravel

Above: examples of preserved architectural elements (DA and LA barforms) from the Lower
Jurassic Kayenta Formation at Sevenmile Canyon (SE Utah, USA).
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Year Subset width Original code Original code Original code
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elements are stored within the FAKTS database in
the form of relationships between numericindices.

FAKTS GENETIC-UNIT GEOMETRY

The dimensional parameters of each genetic unit can be stored as representative thicknesses, flow-
perpendicular (i.e. cross-gradient) widths, downstream lengths, cross-sectional areas, and planform areas.
Widths and lengths are classified according to the completeness of observations into complete, partial or
unlimited categories, as proposed by Geehan & Underwood (1993). Apparent widths are stored whenever
only oblique observations with respect to palaeoflow are available. Where derived from borehole
correlations, widths and lengths are always stored as ‘unlimited’.

Future database developments may involve the inclusion of descriptors of genetic-unit shape, implemented
either by linking these objects to 2D/3D vector graphics or by adding table attributes (columns) relating to
cross-sectional, planform and/or 3D shape types (cf. D-MAKS 2).

Planar cross-stratified gravel

Sand - undefined structure

Trough cross-stratified sand

Planar cross-stratified sand
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Fsm Laminated to massive silt and clay
Fm Massive clay and silt
Fr Fine-grained root bed

Paleosol carbonate

Coal or carbonaceous mud

Undefined facies

il A, oD

FACIES UNITS

In FAKTS, facies units are defined as genetic bodies characterized by homogeneous
lithofacies type down to the decimetre scale, bounded by second- or higher-order (Miall
1996) bounding surfaces. Lithofacies types are based on textural and structural
characters; facies classification follows Miall’s (1996) scheme, with minor additions
(e.g. texture-only classes — gravel to boulder, sand, fines — for cases where information
regarding sedimentary structure is not provided).
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FAKTS-INFORMED Method based

MATERIAL-UNIT
PROPERTIES

We define FAKTS material units as
contiguous volumes of sediment
characterized by having the same value of a
given categorical or discretized continuous
variable, or of any combination of two or
more of them. For example we may wish to
define a material unit on the basis of a given
lithofacies type, or on the basis of a threshold
percentage content in clay and silt, or on the
combination of the two criteria. An individual
material unit would then correspond with all
the physically adjacent FAKTS genetic units
having the required attribute values.
Practically, this means that we can derive
virtually any type of user defined reservoir
and non-reservoir categories and their
relative reservoir-modeling constraints.

One important implication is that the
geometry of material units defined on
genetic-unit types are different from the
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D-MAKS 2 DATABASE OVERVIEW . D-MAKS 2 GENETIC-UNIT SPATIAL RELATIONSHIPS . D-MAKS 2 LARGE-SCALE DEPOSITIONAL-ELEMENT EXAMPLE D-MAKS 2 OUTPUT . INTERNAL ORGANIZATION OF GENETIC UNITS

. . Justlike for FAKTS, the internal organization elements (as shown in the pie-charts below) s
. . . N . . e AND GRAIN-SIZE PROPORTION
DEEP-MARINE CASE-STUDY CLASSIFICATION T ot reatonsipe soween - CLASSIFICATION APILOT CASE STUDY: THE PLEISTOCENE GOLO SYSTEM (CORSICA) et b e raeadn oo o epesiorat oo 1o | (SASCRANSIZE POPORTION
Example system or Subset ‘physiographic - |Transition axis | Conventional direction Contact type anetic units are dioitized as 3D . To guarantee that genetic units from - terms of the objects belonging to lower-order  shown in the bar chart on the right) can be
Systems are defined as segments of slope to that the data are suitable for different purposes | subset attributes setting’ attribute classes : [Vertical U d sh N | ﬁ'ansitions In additign the type of © (D [Bowuresmzsary sameiion?] M The observed channel forms are interpreted different datasets are consistently R A few pilot case studies need to be added to the - scalesthat compose them. o qugntifiepl ip terms of proportions of facie§—
basin plain deep-water environment connectedto  (e.g. W/T plot of architectural-element geometries . slope settin - |vertical pwards arp non-erosional contact across which the transition - _ ® e o o cmonstety conane® | defined, such that database output Published dataset database as a preliminarily test of the consistency of : Information on their composition is given by ~unit grain-size classes. Again, volumetric | Master levee
the same feeder system. D-MAKS 2 stores  suitable for dimensional output and lithofacies- tectonic setting P! 9 * Istrike Right-hand when facina downflow | | Gradational o Nleasifiod o e i largor han th sizs of the subset. can ultimately be compared or G is et al. 2006 Standardizationion genetic-unit defining criteria and the robustness of the  + the relative volumetric proportions of their  proportions can be estimated from variably
systems and their component subsets (i.e.  scale log suitable for facies-proportion output, for | dominant grain size 9 9 basis of a threefold classification Adoposiiona dementspeming e enie | merged, in-house standards are - Gervais et al. a L /sedimentary architecture [ ) A devised data-entry practice; also, this provides a . building blocks. For example, the internal ~ combining genetic-unit occurrence
stratigraphic volumes with given suitability); the  the same outcrop), data must be included inmore | feeder-system type Dip Upstream Erosional of bounding surfaces orger-soal shanmel oo 4 damonsiaby or” R owarorder s canbopaens | referred to for genetic-unit hierarchy - Gervais et al. 2006b ry possibility to determine the feasibility of database . composition of frontal-sheet architectural  frequencies with dimensional parameters. Sheet
same system or subset may be the subject of  thanone subset. Two different tables, referring to aggradation rate ) aswma‘”y interpreted — the largest channel form? ?vh — assignmentand classification. . and data entry interrogation as a way to obtain the expected output, in
different studies, which are included as different  systems and subsets, are used to separately | f ¢ Y—{ Whatis tho nature of the deposts cbeeatons supbeuing et he chamrl The sequential checking of the - DethCk et al. 2008 view of the differences in database design with respect - GRAIN-SIZE PROPORTIONS IN INDIVIDUAL GRAIN-SIZE PROPORTIONS
. asin confinemen encasing the shannel form? forms are contained within a larger channel A Ny N f q . Ch |
entities only in a separate table that records the classify systems and subsets; each table includes g criteria outlined here aims to ensure to FAKTS. : anne
i A : P radient . . | € slo interrogation ) ’ _ Lo FRONTAL SHEET ARCHITECTURAL ELEMENTS IN MODEL FRONTAL SHEET
contribution of different works to every subset. attributes describing both metadata (e.g. data g acies unit 1 facies unit2  facies unit 3 ; it4 facies unit5 L1 NO element type s assigned. | f Only one case study is currently included in D-MAKS 2: L
! ! . e " fa s facies unit 4 The channel forms are completely encased consistency in data definition and . ARCHITECTURAL ELEMENT
However, if the same stratigraphic volume has quality index) and context-descriptive parameters [.] Ideal by the geneticaly related deposit of farger- The channal forms wil be treated 20 entry at the largest scale; element- it consists in a dataset composed of 2D seismic lines - Element 4 Element 5 0% 20% 40% 60% B80% 100%
been described in different source works in a way or depositional-system controls. architectural-panel scale sheets. cetural eloments wihi sheet ©, type attribution is not carried out o g Ouizput tahnd cortes frcc:)m the Pleistolcer';?l :)hf the Golo Ba'tsir),lon . = Very fine ® Fine = Medium = Coarse
...................................................................................................................................... data T caorome s e o bk (ie. element-types are left . . ] e eastern Corsican margin. e papers containing -
_ Sotom-cutent deposts. o anycombinsion| | Check whether e cramal s re erosiona]  Undlefined) whenever the required Additional literature depositional system data from the same dataset were considered (Gervais ) A
D-MAKS 2 G E N ETIC-U N IT - of any of these types of deposits with sheet or aggradational/mixed (sensu Normark 1970). X quir p Y etal. 2006a; 2006b; Deptuck et al. 2008) D-MAKS 2 permits deriving this type of
Smallest scale : —_—- outcrop or combined andlor leves deposis olbse r\;able c:]( r|1nttr:3r[zjreftailtflve : ; ; : - : information for either individual genetic
: L elements on Which the defiNtIONS |« v v v v v vttt et et et e et et e e e e e e e s e e e e n e e e e e e e e e e e e e e e e e e e e e e e e e e e ke e i i ic-uni
HIERARCHY : MARGIN OFF-AXIS AXIS OFF-AXIS MARGIN welllseismic dataset Ihechama ors e sty b eomioman 570 are based are missing. : ;’y’:}'?sv orformodels ;’;g'x’:h%e:;:'&ssnlg
the ter I i
In D-MAKS 2 three different orders of genetic units are B The standard adopted for GENETIC-UNIT HIERARCHY AND DIMENSIONAL PARAM ETERS ofinformation from several units.
considered; however, some geometric units can be 5 =yur= s emar ) d ePOS-Itlg-n ?hl lee mherrtmts tI'IIS D-MAKS 2 effectively reconciles the
> ’ ’ ) . i : Definition of MASTER LEVEES and CHANNEL summarized in the flow-chart on the o o . ) ) . . . : )
multiply nested to span any order of physical scale facies unit 11 facies unit 21 I | perosmoNALELEMENTs voletae | left, which is referred to for the SHEET DEPOSITIONAL-ELEMENT Similarly to FAKTS, D-MAKS 2 allows for the derivation of  blue, together with data from two orders of genetic units thatare =Sty clay mSilt u Sand facies modeland analog approaches
actually observed: these geometrically-classified units : baso by an s surfac (f mixed po), ateraly Deritonof CHANNEL DEPOSITIONAL sequential application of the criteria DIMENSIONAL PARAMETERS dimensional parameters associated with various hierarchical ~ contained within sheet depositional elements and that & 0. st st s e s e e e e e e e e e e e e e T T
can be multiply nested within each other, potentially Ideal log data . deposits sealing the entire channel-levee complex. are bounded f the base by on erosive durin orders and classes of genetic units, readily permitting the sometimes also contain frontal-sheet architectural elements.
- ! ] ] : i g the data-entry process. 12000 ( > an  Of g ) y p 9 ntal-s|
defining a hierarchy of their own, and may contain _ : Surtace, and attop by abandorment The instructions in the chart are . . investigation of relationships between geometrical parameters ~ These ‘fractal-type’ geometric units are also lobe-shaped and FACIES VARIABILITY WITHIN AND ACROSS GEN ETIC UNITS
genetically-classified units (or be contained in Int tative t outcrop or well : meant to be applied afresh and 10000 . with which, for example, to aid subsurface predictions of ~ compensational butoccupy intermediate hierarchical orders.
genetically-classified units), which would therefore nterpretative types u 4 tp rtw [ S S independently for every subset. sandstone lateral extent . : As in FAKTS, database
anchor the scale of the geometric units to th : < @ channel-fll atase O | N ] e = 5 |t hould be evident that, because of _ 8000 Importantly, D-MAKS 2 allows users to simultaneously DIMENSIONAL PARAMETERS OF GENETIC © output can be derived to PROPORTIONS OF FACIES-UNIT GRAIN-SIZE CLASSES IN ADJACENT
scale of units with better-constraine FACIES UNITS © AR |2 axis |2 arehitostural element : T i | the physical and genetic scale to B consider information referring to both scale-dependent and D R S O & * quantify the internal ARCHITECTURAL ELEMENTS DISTINGUISHED BY IN-ELEMENT POSITION
geneticssignificance. . =] 2] M Y N which these units correspond £ 6000 scale-independent elements. To give a flavor of how this can be - organization of spatially- ) )
. Deriton of SHEET DEPOSITIONAL ELEMENTS; - 4 depositional-elements are the most 2 LA achieved, the scatter plot on the lower right reports the width 45 . 0 . related units (see Agg:‘a.;iattlone:l (;.hannilsf;” h"I(EXt:maII vaee ¢ 32
Largest scale . To i he ch L ¢ archi |- e recsarton o o ot mere o hess anarateres | | | e K o someaen | suitable descriptors of the 4000 T T and thickness of genetically-defined frontal-sheet architectural 40 . exampleontheright). (architectural element 31) (architectural element 32)
_ [ : o improve the characterization of architectural . ey coron owtn deaton. 7 cements: O S e, | sedimentary architecture mapped LR elements, in purple, and of sheet depositional elements, in * However, differently from - Axis - - Margin - POSITION - Crest - - Outer -
. Scale-independent : elements, a descriptor of the position of a facies unit 1| Zrce Giect bolnding sroswe surace: Geposis) niopackages hat can bo cononty| i, seismic datasets, although they 2000 35 . © FAKTS, to account for the 9
. vertlcal exaggeration scale-independent : within its parent architectural element (e.g. channel . | -ssparson by e sedlo romelego doystore. fiona o hs previousy deined ceposiionsl | may also find wide application to et M - widerrange of scales that
] tric types . axis, lobe fringe) is included. If a facies unit crosses . elements. Bounding-sirface order information 0 E30 - . "
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user-defined sets of quantitative information on particular inform interpretation of lithologies observed in core.

guide well correlation of fluvial and deep-marine sandstones;
condition object- and pixel-based stochastic reservoir models;
predict the likely heterogeneity of geophysically-imaged
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