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Abstract 

 

Identifying the type of fluid that will be produced at surface is a significant reservoir characterization challenge that is prone to error and 

uncertainty in exploration environment. It usually requires rigorous treatment of equation of state coupled with phase envelopes that are usually 

available in a later stage after drilling the well. The business impact of such errors in fluid identification is remarkable. This can vary from poor 

completion decisions to incorrect reserves estimation. With the introduction of advanced mud gas logging systems (AMG), quantitative 

assessment of gas data comparable to PVT analysis is possible in real-time. This facilitates real-time accurate fluid typing. To get the most 

representative fluid typing results, a framework has to be established where local production data is mapped to compositional data from PVT 

through model building techniques. The successful application of this technique has many advantages. It allowed for accurate fluid typing in 

real-time that provided valuable information for reservoir characterization. This information can affect a spectrum of decisions, starting from 

rig operations to simulation efforts. In this study, a decision tree, which is one form of artificial intelligence, is used to build a model that maps 

compositional to production data using local data sets. The resulting model is then used as a predictive tool to identify fluid types using AMG 

data while drilling before any other formation evaluation data, such as wireline logs, becomes available. 
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Motivation 

 
 To increase confidence in our ability to predict fluid 

type in real time before running wireline logs 

 

 To integrate different sources of data from new and 

existing technologies (Advanced mud gas logging, 

PVT, etc.)  

 

 Extract knowledge from available data in order to 

help guide in making more informed decisions 

 
 



Business Impact 

 

 Utilization of data and knowledge 

discovery 

 

 Improve reserve estimation, 

operational, and completion decisions 

 
 



Advanced Mud Gas Logging 

 Slow development in mud gas 

logging 

 

 Usually used to detect 

hydrocarbon with little 

confidence on hydrocarbon 

fluid typing (Haworth et al 

1985) 

 

 Variable operational settings   

(rig configuration, mud 

characteristics, mud density, 

pressure differential…etc) 

 



Advanced Mud Gas Logging 

 Constant volume and temperature of analyzed mud 



Advanced Mud Gas Logging 

PVT quality gas data (C1-C5) 

 
 



Important Points 

 Existing compositional PVT data is 

used to recognize fluid types 

 

 AMG positive correlation with PVT 

data 

 

 We can use local knowledge 

(experience) to calibrate  

 

 
 



Why Artificial Intelligence? 

 Many useful applications in the PE 

 

 Examples: 

- Anifowose, F., Ewenla, A., Eludiora, S., & Awolowo, O. (2011). 

Prediction of Oil and Gas Reservoir Properties using Support 

Vector Machines. IPTC. 

- Fedenczuk, L., Hoffmann, K., & Fedenczuk, T. (2002). 

Predicting Waterflood Responses with Decision Trees. 

Canadian International Petroleum Conference. 

 

 It can be used for predictive modeling and knowledge 

discovery 

 

 

 



Why Decision Trees? 

 They are suitable for classification tasks. 

 

 They classify data using simple rules that are easy to apply to 

new instances.  

 

 The trees’ model will highlight the most important parameters 

or attributes controlling classification, this is particularly 

important for knowledge discovery.  

 

 They resemble Haworth method, which is an industry 

accepted method for hydrocarbon classification using mud 

logs (Haworth, et al. 1985).  

 

The difference is that the modeled decision tree will be constructed 

based on local data 

 

 



Artificial Intelligence for PVT Calibration 

If Attribute 1 test condition 1 = true then Class = A  

Else 

If Attribute 2 test condition 3 = true Then Class = A 

Else  

Class = B 

 

 



Artificial Intelligence for PVT Calibration 

 Entropy (t) = 

−  𝑝 𝑖|𝑡 𝑙𝑜𝑔2 
𝑐−1
𝑖=0 𝑝 𝑖|𝑡  

 

 Gini (t) = 1 −  [𝑝 𝑖|𝑡 ]2𝑐−1
𝑖=0  

 

 Classification Error (t) = 

1 − 𝑚𝑎𝑥𝑖 𝑝 𝑖 𝑡  

 



Data Collection 

# % C1 % C2 % C3 % i-C4 % n-C4 % i-C5 % n-C5 Type/Class 

1 51.47 17.10 15.29 3.17 7.04 2.95 2.95 oil 

2 50.55 16.11 16.08 3.25 7.72 3.26 3.01 oil 

3 54.16 14.80 14.77 3.07 7.15 3.12 2.91 oil 

4 75.69 11.27 7.06 1.38 2.63 1.06 0.89 gas/condensate 

5 64.75 11.27 10.80 2.67 4.89 2.80 2.25 oil 

6 88.55 7.88 2.24 0.41 0.55 0.21 0.14 gas 

7 87.27 8.22 2.81 0.50 0.59 0.25 0.21 gas 

8 85.16 8.72 3.50 0.69 1.15 0.43 0.32 gas/condensate 

9 85.97 8.46 3.57 0.59 0.89 0.29 0.20 gas/condensate 

10 84.07 8.91 4.12 0.76 1.25 0.49 0.36 gas/condensate 

11 82.62 8.93 4.50 1.01 1.71 0.67 0.47 gas/condensate 

12 84.07 7.90 4.11 0.82 0.82 1.54 0.65 gas 

13 83.74 8.03 4.14 0.94 1.51 0.77 0.84 gas/condensate 

14 84.47 8.22 3.88 0.79 1.41 0.65 0.55 gas 

15 84.59 8.62 4.00 0.71 1.29 0.44 0.32 gas/condensate 

16 99.12 0.25           gas 

17 100.00             gas 

18 99.49 0.47 0.03         gas 

19 86.41 8.35 3.16 0.60 0.79 0.36 0.33 gas/condensate 

20 74.06 10.08 7.56 2.35 3.5 1.8 0.65 oil 



Model Construction Results 



Model Performance on Training 

Predicted Class 

Oil Gas/Condensate Gas 

Actual 

Class 

Oil 3 0 0 

Gas/Condensate 0 5 1 

Gas 0 1 4 

• Using a single number to describe the performance of  the model 

 

• Accuracy is defined as the ratio of the number of correct prediction to 

total number of predictions. On the other hand, error rate represents the 

number of wrong prediction to the total number of predictions 

 

• Using accuracy as a measure, the model is able to have 12 out of 14 

correct predictions. A value of 0.857, given 1 represents the perfect 

score.  

 

 

 



Model Performance on Testing 

• Validation set is used to estimate generalization error 

 

• The model was able to predict the correct class for every single record in 

the validation set. The accuracy measure of the model is a perfect score 

of 1. 

 

• The model is believed to be representative of the data set and can 

accurately map the fluid composition to the correct fluid type (class). 

 

 

 

 

Predicted Class 

Oil Gas/Condensate Gas 

Actual 

Class 

Oil 2 0 0 

Gas/Condensate 0 2 0 

Gas 0 0 2 



Application to Real Time Data 

Composition and Classification Results for Zone A 

Zone A normalized composition 

Predicted 

Class  

From 

Decision 

Tree 

Produced 

Fluid  

from 

Production 

Test 

% 

C1 

% 

C2 

% 

C3 

%  

i-C4 

%  

n-C4 

%  

i-C5 

%  

n-C5 

Oil Oil  

73.9 11.0 6.53 1.57 3.76 1.76 1.43 



Application to Real Time Data 

Composition and Classification Results for Zone B 

Zone B normalized composition 

Predicted Class  

From Decision 

Tree 

Produced Fluid  

from Production 

Test 

% 

C1 

%  

C2 

% 

C3 

%    

i-C4 

%    

n-C4 

%    

i-C5 

%       

n-C5 

Gas Gas 

92.2 6.15 0.73 0.22 0.29 0.19 0.21 



AMG vs PVT Comparison 

Comparison Between PVT and AMG Data 

Normalized  

Composition 

Zone A Zone B 

AMG PVT AMG PVT 

%C1 73.9 73.66 92.21 93.14 

%C2 11.05 11.88 6.15 5.16 

%C3 6.53 7.3 0.73 0.81 

%i-C4 1.57 1.81 0.22 0.19 

%n-C4 3.76 2.83 0.29 0.33 

%i-C5 1.76 1.3 0.19 0.17 

%n-C5 1.43 1.12 0.21 0.17 



Discussion of Results 

• Successful application. 

 

• Decision tree was able to classify 
using simple model. 

 

• Computationally inexpensive. 

 

• Dynamic process. 

 

• Limitation.  

 

 



Conclusion 

• Artificial intelligence can offer 
interesting solutions to petroleum 
engineering problems. 

• Better utilization of local data can 
improve knowledge about the behavior 
of physical properties in the area. 

• Decision tree can be used as 
descriptive and predictive models. 

• AMG data is comparable to PVT for 
(C1-C5) compositions. 

• Uncertainty in fluid typing using AMG if 
a model is built and calibrated using 
PVT data from local setting 

• Using AMG for fluid typing can make 
sampling using expensive formation 
tester or even production tests more 
efficient and targeted. 
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