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Abstract 

 

Bravo Dome Field, in the NE corner of New Mexico, contains approximately 10 Trillion cubic feet of 98% pure CO2 in the Permian age Tubb 

Sandstone formation on top of granite basement beneath a regional seal of the Cimmaron Anhydrite formation at the Eastern edge of the 

Quaternary Raton-Clayton Volcanic field. The trap for the deposit is a lateral facies change to the NW of the Tubb Sandstone draped over the 

SW plunging Sierra Grande uplift. The field is approximately 49 miles NW-SE and 50 miles NE-SW. 

 

Evidence from distribution of noble gases in 14 wells spread across the field shows that within eight miles of the downdip gas water contact in 

the east part of the field, CO2 has left the reservoir by dissolution in the underlying formation water. Noble gases have partitioned into the CO2 

from the water. In the west the noble gases and their isotopes are in low concentrations and distinctive of the mantle. In wells to the east the 

noble gases increase in concentrations because they have entered the CO2 from the water. The gradient allowed calculation of mantle 

concentration of the gases (Ballentine et al., 2005). 

 

However, the 
3
He increases because it is left behind as the CO2 dissolves in the water. 

 

Maps of variation of each noble gas (except xenon, radon) will be presented, each showing an increase in concentration from west to east 

across the field. A surprise was that 
3
He doubles in concentration at the gas/water contact to the east, yet it is not carried in any quantity by the 

water below the field. The accumulation of 
3
He near the gas-water contact is therefore due to depletion of CO2 in the gas due to dissolution in 

the underlying water.  

 

From the doubling of 
3
He concentration at the gas-water contact one can surmise half of the volume of the CO2 has been lost at the gas-water 

contact. More detailed calculations will be shown. The continued dissolution of the CO2 into the brine may be favored by the sinking of the 



dense CO2 saturated water away from the gas-water contact. The mass transport of CO2 away from the gas-water contact is due to natural 

convection and much larger than diffusive mass transfer and may explain the observed large 
3
He build-up. 

 

In summary, it is highly probable that CO2 has been lost downdip in formation water, and this may well be a general situation in nature 

(Gilfillan et al., 2009) and in CO2 sequestration projects. 
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Plan of Presentation  
• Introduction and objective of investigation. 

 

• Plate tectonic setting of CO2 deposits in the 
Western USA and Geologic setting of Bravo 
Dome. 

 

• Possible CO2 sources and use of isotopes of  
carbon and noble gases to indicate the 
source of CO2 at Bravo Dome. 

 

• Examination of noble gas distribution in Bravo 
Dome showing it to be a dynamic CO2 
deposit changing with time. 
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Location Bravo Dome CO2 natural gas field and associated basalt 

extrusive flows and intrusive centres of the Cenozoic Raton-Clayton 

volcanic field. (modified from Broadhead, 1993). 

 



Tectonic Setting 



Western US > 50% CO2 

55 Significant 

deposits of gas, 

CO2 over 50% 

 

Bravo Dome 

Permian 

   Field          CO2  

St Johns     14.8 TCF 

Bravo Dome 10 TCF 

Sheep Mtn.     2 TCF 

McElmo D.  10 TCF 

La Barge Platform 

      100+ TCF 



                                                   -5 

After Thrasher & Fleet, 1995; Wycherley, 1999. 

Typical carbon isotope values of major  

sources of CO2 in the subsurface 
 



3He /4He R/Ra various geologic settings   
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 From Cassidy, 2005: Newell et al,, 2005; Graham, 2002; Ballentine et al., 2001; 

 Sherwood Lollar et al., 1997.   

    R/Ra  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 

>  43 



Slow P wave velocity indicates mantle that is tectonically 

active and partly molten, High 3He/4He/Ra in spring waters 

and gas deposits shows mantle access. 

Modified from Newell et al., 2005. 

Bravo Dome 

Relative P-Wave Velocity at 100 KM 



Helium 3 (3He) 

Marker of the Mantle 

• Stable isotopes of Helium are 3He and 
4He. 
 

• Helium 3 (3He) is created in stars, 
including our sun, but it is not created 
on earth by any common process.  
 

• 4He is also created in stars but that in 
the earth is primarily from radioactive 
decay of uranium and thorium. 



•  3He now in the earth is from the original  accretion. It 
is still leaking to the surface. 
 

• From the atmosphere helium gradually escapes into 
space, unlike other noble gases that accumulate in 
the atmosphere. Helium content is 5.24 X 10-6 cc/cc. 
 

• The ratio in air of 3He/4He is 1.4 X 10-6. 
 

• That ratio in air (Ra) is the standard to which is 
compared the ratio of 3He/4He in subsurface gases. 
 

• Helium from the upper mantle has an Ra of about 6 
to 12 Ra, helium from the crust has .02 to .04 Ra. 
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Noble Gases Concentration 

Air and Bravo Dome, cc/cc 

Noble Gas In Air                   BD West          BD East 

3He 7.36 x 10-12        1.87 x 10-10  4.00 x 10-10 

4He 5.24 x 10-6          3.1 x 10-5      41.46 x 10-5         

20Ne 1.07 x 10-5         1.03 x 10-9     7.00 x 10-9 

36Ar 3.08 x 10-5         1.10 x 10-9    14.0  x 10-9 

40Ar 9.30 x 10-3      2.40 x 10-5     6.52 x 10-5 

84Kr 1.14 x 10-6        0.473 x 10-10  5.04 x 10-10 



Bravo Dome field 



Bravo Dome Field 



Bravo Dome Field 



NW-SE 

above dike sweeping water and noble gases down dip .      .      

Basalt Dike 

7 
3He 1.87 x10-10 

3He 4.00 x 10-10 



History of Bravo Dome Gas 

Deposit. 

1. CO2 degassed from basalt magma of dike below field. 

2. Rising through cracks in granite basement it entered and 

collected in the first reservoir with effective seal. 

3    It swept down-dip connate water with noble gases. 

4. CO2 dissolves in the water leg, noble gases remain in 

reservoir and more noble gases enter from the water leg. 

Noble gases accumulate in the CO2 with time. 



Conclusions 

 

 

 

 
 

 

 1. Bravo Dome field is sourced from the mantle.                                 

 

2. It is likely western US CO2 deposits are sourced from the mantle. 

 

 3. CO2 deposits are found in association with basic igneous rocks      

     where they pierce sedimentary section with reservoirs and seals. 

 

                                                                  4. CO2 gases carry noble gases distinctive of their source.                                                                                   

 

5. CO2 deposits change with time as the gas dissolves in down        

dip water and noble gasses enter the CO2. 

 

              6. CO2 escapes from the trap in moving formation water.                                
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 Hypothesis 

CO2 rises in ultramafic basalt mantle magma. 

It brings with it noble gases distincite of the 

mantle.  

It exsolves and enters the first porosity above 

basement. If seals are present it is trapped. 

CO2 dissolves in underlying and down dip water 

columns. The deposit is ephemeral in geologic 

time! 

 

 



Productive Section 

Bravo Dome field 



NW-SE 

above dike sweeping water and noble gases down dip .      .      

Basalt Dike 

7 
3He 1.87 x10-10 

3He 4.00 x 10-10 



Radiogenic

Component Magmatic Component

Aquifer Recharge

Atmospheric Component

In-situ

Deep

Formation Water

20Ne
36Ar

4He
21Ne
40Ar 3He

Radiogenic

Component Magmatic Component

Aquifer Recharge

Atmospheric Component

In-situ

Deep

Formation Water

20Ne
36Ar

4He
21Ne
40Ar 3He

• He, Ne, Ar, Kr, Xe 

 

• Three Sources 

Groundwater (air) 

Crust (Radiogenic) 

Mantle 

 

• Isotopically Distinct 

Resolvable 

  

• Quantify interaction/origin of fluids 

sourced from these different regions 

 

Noble Gases in a Nutshell 
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