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Abstract

Bravo Dome Field, in the NE corner of New Mexico, contains approximately 10 Trillion cubic feet of 98% pure CO, in the Permian age Tubb
Sandstone formation on top of granite basement beneath a regional seal of the Cimmaron Anhydrite formation at the Eastern edge of the
Quaternary Raton-Clayton Volcanic field. The trap for the deposit is a lateral facies change to the NW of the Tubb Sandstone draped over the
SW plunging Sierra Grande uplift. The field is approximately 49 miles NW-SE and 50 miles NE-SW.

Evidence from distribution of noble gases in 14 wells spread across the field shows that within eight miles of the downdip gas water contact in
the east part of the field, CO; has left the reservoir by dissolution in the underlying formation water. Noble gases have partitioned into the CO,
from the water. In the west the noble gases and their isotopes are in low concentrations and distinctive of the mantle. In wells to the east the
noble gases increase in concentrations because they have entered the CO, from the water. The gradient allowed calculation of mantle
concentration of the gases (Ballentine et al., 2005).

However, the 3He increases because it is left behind as the CO, dissolves in the water.

Maps of variation of each noble gas (except xenon, radon) will be presented, each showing an increase in concentration from west to east
across the field. A surprise was that *He doubles in concentration at the gas/water contact to the east, yet it is not carried in any quantity by the
water below the field. The accumulation of *He near the gas-water contact is therefore due to depletion of CO; in the gas due to dissolution in
the underlying water.

From the doubling of *He concentration at the gas-water contact one can surmise half of the volume of the CO, has been lost at the gas-water
contact. More detailed calculations will be shown. The continued dissolution of the CO; into the brine may be favored by the sinking of the



dense CO, saturated water away from the gas-water contact. The mass transport of CO, away from the gas-water contact is due to natural
convection and much larger than diffusive mass transfer and may explain the observed large *He build-up.

In summary, it is highly probable that CO, has been lost downdip in formation water, and this may well be a general situation in nature
(Gilfillan et al., 2009) and in CO, sequestration projects.
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Plan of Presentation

Introduction and objective of investigation.

Plate tectonic setting of CO,, deposits in the
Western USA and Geologic setting of Bravo
Dome.

Possible CO, sources and use of isotopes of
carbon and noble gases to indicate the
source of CO, at Bravo Dome.

Examination of noble gas distribution in Bravo
Dome showing it to be a dynamic CO,
deposit changing with time.
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volcanic field. (modified from Broadhead, 1993).
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Relative P-Wave Velocity at 100 KM
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and gas deposits shows mantle access.
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Helium 3 (3He)
Marker of the Mantle

 Stable isotopes of Helium are 3He and
“He.

« Helium 3 (3He) is created in stars,
iIncluding our sun, but it Is not created
on earth by any common process.

» “He is also created in stars but that in
the earth is primarily from radioactive
decay of uranium and thorium.



3He now in the earth is from the original accretion. It
IS still leaking to the surface.

From the atmosphere helium gradually escapes into
space, unlike other noble gases that accumulate In
the atmosphere. Helium content is 5.24 X 10 cc/cc.

The ratio in air of *He/*He is 1.4 X 10-°,

That ratio in air (Ra) is the standard to which is
compared the ratio of 3He/*He in subsurface gases.

Helium from the upper mantle has an Ra of about 6
to 12 Ra, helium from the crust has .02 to .04 Ra.



\ Average Gas Composition

Compound | Average % (6
different wells)
CO, 99.6266
Bravo Dome e s
Tubb Sandstone He 0.0168
. H, 0.0132
Reservoir A 0.0033
CH, 0.0005
O ND
H,S ND
CO ND
Producing Reservoir Depth | 2500' - 3000'
Original Reservoir Pressure | 336 to 1082 psi
Reservoir Temperature 92°F at 2400ft
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Noble Gases Concentration
Air and Bravo Dome, cc/cc

Noble Gas |In Air BD West BD East

SHe 7.36 x 1012 |1.87 x 1018 4.00 x 1019
“He 5.24 x 10 3.1x10° | 41.46 x 107
ONe 1.07 x 10> [|1.03x10° | 7.00 x 10-°
3OAr 3.08x10> [1.10x10° | 14.0 x 107
4O0Ar 9.30x 102 |2.40x10°| 6.52x10°
84Kr 1.14x 10°% 0.473 x 101? 5,04 x 1010
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Figure 3.2-6.

1. Original magmatic gases fill Tubb Sandstone.above dike sweeping water and noble gases down dip .
2. CO, dissolves in water laterally down dip.

3. Noble gases enter CO, laterally from water down dip.




History of Bravo Dome Gas
Deposit.

. CO, degassed from basalt magma of dike below field.

. Rising through cracks in granite basement it entered and
collected 1n the first reservoir with effective seal.

It swept down-dip connate water with noble gases.

. CO, dissolves 1n the water leg, noble gases remain in
reservoir and more noble gases enter from the water leg.
Noble gases accumulate in the CO, with time.



Conclusions

1. Bravo Dome field 1s sourced from the mantle.
2. It 1s likely western US CO, deposits are sourced from the mantle.

3. CO, deposits are found 1n association with basic 1igneous rocks
where they pierce sedimentary section with reservoirs and seals.

4. CO, gases carry noble gases distinctive of their source.

5. CO, deposits change with time as the gas dissolves in down
dip water and noble gasses enter the CO.,.

6. CO, escapes from the trap in moving formation water.
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Hypothesis

CO, rises in ultramafic basalt mantle magma.

It brings with it noble gases distincite of the
mantle.

It exsolves and enters the first porosity above
basement. If seals are present it is trapped.

CO, dissolves in underlying and down dip water
columns. The deposit is ephemeral in geologic
time!



Productive Section
Bravo Dome field

LEGEND

Anhydrite

Dolomite —
Limestone L1

Shale
Sandstone
Conglomerate
Basalt
Granite

Fault ,E’

Unconformity -~~~

OCimmaron Anydrite
Tubb Sandstone

2500 A0

S it |

Precambrian granite




Schematic Nw-sE Cross Section E
WILDCAT BD7 BD4 BD3

2 OpNg < 2x 10 co/ce 3He 4.00 x 1010

YESO FM SEALS 2 0Ne 7 x10 cclco
CIMMARON ANHY

CO2

TUBB FM. TUBB FM. t Gas 02
Gas , 7

NO CONTACT WITH = Ho Water
UNDERLYING WATER UBB
2

Gas

GRANITE ~ Water AFBMO

Basalt Dike

N

Figure 3.2-6.

1. Original magmatic gases fill Tubb Sandstone.above dike sweeping water and noble gases down dip .
2. CO, dissolves in water laterally down dip.

3. Noble gases enter CO, laterally from water down dip.




Noble Gases in a Nutshell

He, Ne, Ar, Kr, Xe

. | Atmospheric Component

Three Sources
» Groundwater (air)
» Crust (Radiogenic)

> Mantle EX\
' Deep]
4WOAr

3H

)

: e Component
Isotopically Distinct r 1 4

» Resolvable

Quantify interaction/origin of fluids
sourced from these different regions
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