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Abstract 

 
Important changes in carbonate mineralogy, texture, and stable isotope composition occur at the transition from the Wilkins Peak Member to 
the Laney Member in the Eocene Green River Formation, Wyoming, which reflect evolution of inflow waters, lake waters, and 
paleoenvironments. 
 
Alternating organic-rich laminae and primary aragonite and calcite laminae were identified from the lower Laney Member in the Bridger Basin, 
Wyoming. Criteria for identifying primary lacustrine aragonite include its purity, preservation of well-sorted, prismatic crystals 5-10 μm in 
length, micro-lamination defined by crystal size variation, and poor cementation. Primary precipitated calcite also forms laminae that are 
monominerallic, unconsolidated, and lack diagenetic overprints. Calcite crystals are well-sorted equant blocky polyhedra, ~10 μm in size. 
Primary calcite and aragonite in the lower Laney Member have δ18O values that decrease upward by ~3‰ over 15 meters of stratigraphic 
section which suggests (1) source waters changed to high altitude foreland rivers or (2) lake waters underwent less evaporative concentration 
than in the underlying Wilkins Member. 
 
The top of the Wilkins Peak Member contains heterogeneous laminae of calcite and dolomite. Evaporites associated with these layers suggest 
deposition in underfilled, evaporative lakes. Carbonate mineral textures include well-sorted euhedral primary-precipitated dolomite crystals 
<15 μm and interlocking diagenetic mosaics of calcite and dolomite 20-70 μm in size. Electron microprobe analyses indicate diagenetic 
overgrowths of Fe-rich dolomite on cloudy Fe-poor cores.  δ18O values of carbonate laminae in the upper Wilkins Peak Member vary by ~6‰ 
with no covariance, suggesting diagenetic overprinting. The results from this study show that understanding the primary lacustrine versus 
diagenetic origin of Green River carbonate minerals is essential for paleoenvironmental and paleoclimate interpretations 
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LM
WPM

Sample ID Depth (m) % FeCO3 
(Core)

% FeCO3 
(Margin)

BF-18a 137.1 0.00 0.20

BF-18b 137.1 0.00 0.00

BF-18c 137.1 0.09 0.11

BF-34c 168.2 0.00 0.05

BF-34d 168.2 0.19 0.13

Sample ID Depth (m) % FeCO3 
(Core)

% FeCO3 
(Margin)

BF-17a 136.0 0.52 0.41
BF-18a 137.1 0.44 0.28
BF-18a 137.1 0.18 0.27
BF-18a 137.1 0.33 0.27
BF-18a 137.1 0.28 0.45
BF-18a 137.1 0.60 0.42
BF-26a 154.0 0.57 0.45
BF-34c 168.2 0.27 0.31
BF-34d 168.2 0.24 0.28

Sample ID Depth (m) % FeCO3 
(Core)

% FeCO3 
(Margin)

BF-18a 137.1 2.51 3.59
BF-18a 137.1 0.10 0.87
BF-18b 137.1 0.00 1.14
BF-18b 137.1 0.00 0.81
BF-18c 137.1 0.24 0.52
BF-18c 137.1 0.00 0.25
BF-26a 154.0 0.09 0.65

Sample 
ID Depth (m) # of Samples Mg-Content 

(mol %)
BF-8a 125.8 4 1.09
BF-8j 125.8 5 0.78
BF-8x 125.8 4 1.28
BF-17a 136.0 5 0.67
BF-17c 136.0 6 0.39
BF-18b 137.1 5 0.23
BF-34b 168.2 8 0.22
BF-34c 168.2 5 0.21 *

* See Fig. 8 for electron microprobe line scan 
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Table 2. Electron microprobe results from dolomite crystals which 
varied in iron between the core and margin. 

Table 1. Average Mg-content of low-Mg calcite crystals from the LM 
and WPM. Values were obtained from electron microprobe point 
scans.

Table 3. Electron microprobe results from dolomite crystals which 
lacked significant variation in iron between core and margin. 

Table 4. Electron microprobe results from dolomite crystals which 
lacked iron in both core and margin. 

Figure 10. Compilation of data between this study and Carroll et al. (2008) and Doebbert et al. (2010) demonstrating an overall 
decreasing trend as lake conditions transitioned from underfilled (WPM) to balanced fill (lower LaClede) to overfilled (upper LaClede). 
Underfilled and balanced fill illustrations from Renaut and Gierlowski-Kordesch (2010).

Figure 9. Generalized stratigraphic cross section with interpreted depositional environments, carbonate and silicate mineralogy (in relative 
percentage), and isotopic data for samples of the WP-LM transitional zone, ERDA Blacks Fork 1 Core, Bridger Basin, WY (See Fig. 1 for 
location). Tuff locations and ages from Smith et al. (2008). Calculation of δ18OH2O (vsmow) from  equation 17.19 by Faure (1998). 

Figure 8. A) Alternating pure dolomite laminae (light to dark brown) and diagenetic shortite (dark gray laminae). B) EMP backscatter image 
of a carbonate grain containing a calcite core with dolomite overgrowth. C) EMP line scan through transect A-A’ from through a carbonate 
crystalfrom a pure dolomite laminae in (A) documenting changes in calcium, magnesium, and iron concentrations. 

Figure 7. Mineralogy (in relative %) of select laminae from the WPM-LM transition zone in the ERDA 1 Blacks Fork Core.

Figure 6. Hand sample (A), SEM (C, D, E) and thin section (B) images of carbonate crystals and textures observed in the Wilkins Peak Member. A) Mudcracks within the dark 
micro-crystalline dolomite laminae are common and filled with calcite (upper inset image). Variations in the silt-sized carbonate occur further down in the section from Na-carbonate 
evaporite disruption (lower inset image). B) Thin section image of a dolomite rhomb with a cloudy core and clear rims of overgrowth dolomite. C) SEM image of larger dolomite 
overgrowth crystals within pure-dolomite laminae. D) SEM image of a mixed calcite/dolomite layer showing diverse sizes in crystals. E) An isolated dolomite crystal from SEM.

Figure 5. Hand sample (A), thin section (B) and SEM image (C) of primary dolomite laminae 
from the WPM. A) Alternating primary dolomite laminae (dark brown) and diagenetic 
carbonate (light laminae). B) Thin section image of a pure dolomite lamina. C) SEM image of 
a dolomite lamina showing well sorted, pure, and unconsolidated crystals.

Figure 4. Hand sample (A), thin section (B), and SEM (C) images of primary precipitated calcite from the ERDA 1 
Blacks Fork Core, 125.9m. A) Alternating light calcite-rich and darker, organic-rich laminae. E) Thin section image 
of primary equant calcite crystals. C) SEM image of unconsolidated primary calcite rhombs and minor cement. 

Figure 3. Hand sample (A), thin section (C), and SEM images (B,D,E) of aragonite laminae from the Laney Member of the ERDA 1 Blacks Fork Core, 121.2m. A) Hand sample image showing 100μm scale 
lamination defined by light aragonite layers and dark organic-analcime-rich layers. B) Backscatter SEM image showing laminae of unconsolidated needle-shaped crystals of aragonite. C) Thin section image of 
aragonite showing the preservation of randomly oriented ~10μm needles. D) SEM image of pure unconsolidated aragonite needles. Aragonite shows sub-lamination defined by crystal size variation E) SEM image 
of unconsolidated pure prismatic aragonite.

Figure 2. Stratigraphic section of the ERDA 1 Blacks Fork Core from the Wilkins Peak Member-Laney Member transitional 
zone from 120-170m.

Figure 1. Geologic map of the Green River Formation of Wyoming, Colorado, and Utah showing the ERDA 1 Blacks 
Fork Core location. (modified from Roehler, 1992; Smith et al., 2008; and Jagniecki et al., 2013).
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Alkaline Earth 
Carbonates

7) Similar to diagenetic lacustrine carbonate: Lake 
Hayward, Western Australia (Rosen and Coshell, 
1992) Minnesota lakes (Last, 1990); Devils Lake, 
North Dakota (Last, 1990)

6) Euhedral crystal grains terminate into primary 
pores

5) Crystals larger than precipitates in same lamina

4) Heterogeneous crystal sizes

3) Interlocking crystalline mosaics

2) Fe-rich cement (Table 2)

1) Overgrowth cement nucleating from a core (Fig. 
6B) 

DIAGENETIC CRITERIA:

10) Similar to modern primary 
lacustrine dolomite: saline lakes of 
south and southeastern Australia 
(De Deckker and Last, 1988 – 
Western Victoria; Warren, 1990 – 
Coorong region lakes; Coshell et al., 
1998 – Lake Walyungup); Manito 
Lake, Canada (Last et al., 2012)

9) Similar to modern primary 
lacustrine calcite: Lake Zurich, 
Switzerland (Kelts and Hsü, 1978); 
Lake Greifen, Switzerland 
(Hollander et al., 1992), and 
Fayetteville Green Lake, NY 
(�ompson, 2000) 

8) Similar to modern lacustrine 
aragonite: Pyramid Lake, Nevada 
(Galat and Jacobsen, 1985); 
Waldsea Lake, Deadmoose Lake, 
and Little Manitou Lake, Western 
Canada (Last and Vance, 1997); 
Dead Sea, Israel and Jordan (Garber 
et al., 1987); and Lake Balaton, 
Hungary (Müller, 1971)

7) Other minerals hydrody-
namically equivalent

6) Sub-layers de�ned by crystal 
size variation (aragonite, Fig. 
6D)

4) Monominerallic

3) Micro-crystalline

2) Homogeneous, same crystal 
size, well-sorted

1) Unstable polymorph 
(aragonite, Fig. 3)

PRIMARY CRITERIA:PRIMARY CRITERIA:

5) No cement/primary pore 
space
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  Previous work by Carroll et al. (2008) and Doebbert et al. (2010) focused on 
paleoenvironmental changes from the LaClede Bed of the basal LM. Carroll et al. 
(2008) found a 6‰ decrease in carbonates from the Washakie Basin. �is occurred 
across a “�ll-to-spill” surface, marking a transition from a balanced �ll (lower 
LaClede) to over�lled (upper LaClede) Lake Gosiute (Fig. 10). �e interpretation of 
this shi� was related to the capture of a lighter-sourced foreland river. Doebbert et al. 
(2010) veri�ed that this transition also occurs west of the Rock Springs Upli� in the 
Bridger Basin (Fig 1.). 
  In this study, δ18O trends from pristine, unaltered carbonate laminae exhibit a  
~3‰  negative shi� from -3‰ to -6‰ (VPDB) immediately across the WPM-LM 
transition from the ERDA 1 Blacks Fork Core, Bridger, Basin, WY. �is shi� occurs 
stratigraphically below previous reported values (Carroll et al., 2008; Doebbert et al., 
2010). �is re�ects changing lake conditions from under�lled to balanced �ll over 
~15m of stratigraphic section (Figs. 9 & 10). 
  Petrographic study and stable isotope analysis at the lamina level resulted in 
the discovery of a new isotopic shi� for Laney Member deposits in the Bridger Basin 
likely related to new in�ow water sources (e.g. Carroll et al., 2008) or an overall 
freshening of the lake.Origins of alkaline earth 

carbonates in lacustrine settings: 

1) Primary precipitates in the 
water column

2) Biologically produced skeletons

3) Transported detrital grains

4) Diagenetic alteration products

- Core Research & Sampling
 ERDA 1 Blacks Fork Core (Fig. 1)
- Microscopy
 Thin sectioning of core samples 
 Transmitted Light & Scanning
   Electron Microcopy (SEM)
- X-ray Powder Di�raction (XRD)
 Micromill and XRD individual laminae
 Rietveld re�nements to quantify    
  mineralogy using GSAS      
  (Larson and Von Dreele, 2000)
- Electron Microprobe (EMP)
 Mg-content of calcite & 
  Fe-concentration of dolomite
- Stable Isotope Analyses
 Micromill select laminae 
 δ18O and δ13C of individual carbonate  
  laminae

  The Green River Formation (GRF) of Wyoming, Colorado, and Utah is an Eocene 
lacustrine deposit (ca 53 and ca 48 Ma) that formed in foreland basins east of the 
Cordilleran fold and thrust belt (Smith et al., 2008; Fig. 1). Sediments of the GRF were 
deposited in two large lakes: Lake Gosiute in the Bridger and Washakie Basins and 
Lake Uinta in the Uinta and Piceance Creek Basins (Bradley, 1964). Green River lakes 
periodically varied between under�lled evaporative stages (e.g. Wilkins Peak 
Member), balanced �ll “fresher” water lakes (e.g. early Laney Member), and over�lled 
states. 
  The WPM is dominated by calcareous mudstones (commonly kerogen-rich) and 
quartzose and arkosic sandstones which were deposited in hydrologically-closed, 
saline lakes (Smoot, 1983; Fig. 2). WPM facies form well-developed meter-scale cycles 
which re�ect lake expansion and contraction (Pietras and Carroll, 2006; Fig. 2). The 
overlying LaClede Bed of the basal LM represents a return to profundal lake stages 
�uctuating between balanced �ll and over�lled conditions (Carroll et al., 2008; 
Doebbert et al., 2010; Fig. 2). The LaClede bed comprises organic-rich and 
well-laminated carbonates that suggest deposition in a meromictic lake with anoxic 
bottom waters. Fish fossils from this unit indicate fresher surface waters. 
  The transition from the WPM to the LM is a result of changing lake conditions 
from a hydrologically closed, and under�lled saline basin into a balanced �ll to 
over�lled lake. Previous work by Carroll et al. (2008) and Doebbert et al. (2010) 
suggest decreasing salinity during this transition due to the capture of a 
lighter-sourced river or rivers, marked by a decrease in carbonate δ18O. 

  Important changes in carbonate mineralogy, texture, and stable isotope 
composition occur at the transition from the Wilkins Peak Member to the Laney 
Member in the Eocene Green River Formation, Wyoming (Figs. 1 & 2), which re�ect 
evolution of in�ow waters, lake waters, and paleoenvironments . 
  Alternating organic-rich laminae and primary aragonite and calcite laminae 
were identi�ed from the lower Laney Member in the Bridger Basin, Wyoming (Fig. 
1). Criteria for identifying primary lacustrine aragonite include its purity, 
preservation of well sorted, prismatic crystals 5-10μm in length, micro-lamination 
de�ned by crystal size variation, and poor cementation (Fig. 3). Primary 
precipitated calcite also forms laminae that are monominerallic, unconsolidated, 
and lack diagenetic overprints. Calcite crystals are well sorted equant blocky 
polyhedra, ~10μm in size (Fig. 4). Primary calcite and aragonite in the lower Laney 
Member have δ18O values that decrease upward by ~3‰ over 15 meters of 
stratigraphic section which suggests (1) source waters changed to high altitude 
foreland rivers or (2) lake waters underwent less evaporative concentration than in 
the underlying Wilkins Member (Figs. 9 & 10).
  The top of the Wilkins Peak Member contains heterogeneous laminae of 
calcite and dolomite. Evaporites associated with these layers suggest deposition in 
under�lled, evaporative lakes. Carbonate mineral textures include well-sorted 
euhedral primary-precipitated dolomite crystals <15μm (Fig. 5) and interlocking 
diagenetic mosaics of calcite and dolomite 20-70μm in size (Fig. 6). Electron 
microprobe analyses indicate diagenetic overgrowths of Fe-rich dolomite on 
cloudy Fe-poor cores (Fig. 6B; Fig 9; Tables 1-4). δ18O values of carbonate laminae in 
the upper Wilkins Peak Member vary by ~6‰ with no covariance, suggesting 
diagenetic overprinting (Fig. 9). The results from this study show that 
understanding the primary lacustrine versus diagenetic origin of Green River 
carbonate minerals is essential for paleoenvironmental and paleoclimate 
interpretations.

MURPHY, John T. Jr. (jmurph11@binghamton.edu); LOWENSTEIN, Tim K. (lowenst@binghamton.edu)  
Department of Geological Sciences, Binghamton University, State University of New York, 4400 Vestal Parkway East, Binghamton, NY, 13902

PRESERVATION OF PRIMARY LAKE SIGNATURES IN CARBONATES OF THE EOCENE GREEN RIVER 
WILKINS PEAK-LANEY MEMBER TRANSITIONAL ZONE

State University of New York

BINGHAMTON
U  N  I  V  E  R  S  I  T  Y


