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Abstract 

 
To optimally stimulate an unconventional reservoir hydraulically, it is important to identify brittle regions based on knowledge of the geology, 
petrophysics, mineralogy, and rock mechanics of the area of study. This research reconciles some of the brittleness terminology in the literature 
and classifies the Barnett Shale in terms of its geomechanical properties, defining the more-brittle regions in Young's modulus and Poisson's 
ratio crossplots and λρ - μρ space. These geomechanical properties were defined, calibrated, and computed using specialized logging tools such 
as: mineralogy, density, and P- and Swave sonic logs, and calibrated to previous core descriptions and laboratory measurements. With proper 
calibration these measurements provide a means to geomechanically characterize a reservoir. In the Barnett Shale, the combination of high 
concentrations of quartz and calcite gives rise to more brittle rocks, while ductility is controlled primarily by clay content. Contrary to the 
commonly held understanding, in the Barnett increased kerogen (TOC) does not make the rock more ductile. Further, microseismic-event 
locations from a 3D seismic survey acquired after more than 400 wells have been drilled and hydraulically fractured in the area agree to the 
predicted brittle regions in the λρ - μρ crossplot, suggesting that hydraulically induced fractures preferentially populate brittle regions and, 
consequently, produce more gas. Thus, these results are useful to calibrate estimation of 3D seismic attribute brittleness. 
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UNCONVENTIONAL 

INTRODUCTION 
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Source: EIA. Updated May 9th, 2011 

BARNETT SHALE: 
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Low porosity* (6%) 

High TOC* 

*Average values corresponding to the Barnett Shale 
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GOAL 

Finding areas in the shale play that are “brittle” is important in the 

development of a fracture fairway large enough to connect the 

highest amount of “rock volume” during the hydraulic – 
fracturing process. 3 



OUTLINE 

• Introduction 

• Objectives 

• Mineralogy-based brittleness prediction 

from surface seismic data 

• Surface seismic estimation of 

hydraulically fractured rock 

• Microseismic events and flow measured 

from production logs 

• Conclusions 
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OBJECTIVES 

• Previous work (Thompson, 2010; Zhang, 2010) has 

shown that seismic impedance, curvature, and other 

attributes visually correlate with reservoir performance 

 

 

 

 

 

 

• Can I link seismic data measurements such as prestack 

seismic inversion attributes, microseismic event location 

and magnitude, and most important, EUR, to reservoir 

performance? 
6 

Relative EUR value co-rendered with most positive 

curvature (Thompson, 2010) 

Anisotropy intensity with polygons of microseismic events from six 

experiments. Notice the micro-seismic events appear in areas of low 

anisotropy intensity. (Zhang, 2010) 



OUTLINE 

• Introduction 

• Objectives 
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WHAT IS 
BRITTLENESS??? 

BRITTLE DUCTILE 
BRITTLENESS is the 

measurement of stored energy 

before failure and is function 

of: 

• Rock strength 

• lithology 

• texture 

• effective stress 

• temperature 

• fluid type 

• diagenesis 

• TOC 

BRITTLENESS INDEX (BI) is 

the most widely used 

parameter for the 

quantification of rock 

brittleness. 

𝜎𝑐 = Compressive strength 

𝜎𝑡 = Tensile strength 
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Higher the magnitude of the 

BI, the more brittle the rock 

is. 



BRITTLENESS 

• How do to quantify brittleness 

 1) Mineralogy?? 

 2) Elastic parameters?? 
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BRITTLENESS 

GEOLOGY GEOMECHANICAL 

MINERALOGY ELASTIC 
PARAMETERS 



BRITTLENESS INDEX 
(Mineralogy) 

Qz = Quartz 

Ca = Calcite 

Cly = Clay 
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Dol = Dolomite 

TOC = Total Organic Carbon  



CALIBRATION OF BRITTLENESS TO 
ELASTIC ROCK PROPERTIES VIA 

MINERALOGY LOGS 
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BRITTLENESS AVERAGE 
(Elastic parameters) 
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CALIBRATION OF BRITTLENESS TO 
ELASTIC ROCK PROPERTIES VIA 

MINERALOGY LOGS 
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CALIBRATION OF BRITTLENESS TO 
ELASTIC ROCK PROPERTIES VIA 

MINERALOGY LOGS 
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CALIBRATION OF BRITTLENESS TO 
ELASTIC ROCK PROPERTIES VIA 

MINERALOGY LOGS 

15 



CALIBRATION OF BRITTLENESS TO 
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CALIBRATION OF BRITTLENESS TO 
ELASTIC ROCK PROPERTIES VIA 

MINERALOGY LOGS 
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SURFACE SEISMIC ESTIMATION OF 
HYDRAULICALLY FRACTURED ROCK 
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Angle Gathers 

RP reflectivity RS reflectivity 

ZP impedance ZS impedance 

λρ µρ 

λρ vs. µρ crossplot 

Goodway (2007) 



SURFACE SEISMIC ESTIMATION OF 
HYDRAULICALLY FRACTURED ROCK 
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SURFACE SEISMIC ESTIMATION OF 
HYDRAULICALLY FRACTURED ROCK 
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SURFACE SEISMIC ESTIMATION OF 
HYDRAULICALLY FRACTURED ROCK 

22 



SURFACE SEISMIC ESTIMATION OF 
HYDRAULICALLY FRACTURED ROCK 
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SURFACE SEISMIC ESTIMATION OF 
HYDRAULICALLY FRACTURED ROCK 
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Upper Lower Barnett Shale Lower Lower Barnett Shale 



SURFACE SEISMIC ESTIMATION OF 
HYDRAULICALLY FRACTURED ROCK 
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PRODUCTION LOGGING COMBINED WITH 3D SURFACE 
SEISMIC  

IN UNCONVENTIONAL PLAYS CHARACTERIZATION 

26 Microseismic events trend towards quartz-rich areas, avoiding clay-rich zones (green). 



PRODUCTION LOGGING COMBINED WITH 3D SURFACE 
SEISMIC  

IN UNCONVENTIONAL PLAYS CHARACTERIZATION 
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PRODUCTION LOGGING COMBINED WITH 3D SURFACE 
SEISMIC  

IN UNCONVENTIONAL PLAYS CHARACTERIZATION 
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Microseismic events trend towards negative curvature values (green) avoiding the most positive 

curvature zones (orange) and follow the velocity anisotropy trend, previously described by 

Thompson (2010) and Browning (2006). 



PRODUCTION LOGGING COMBINED WITH 3D SURFACE 
SEISMIC  

IN UNCONVENTIONAL PLAYS CHARACTERIZATION 
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The majority of the microseismic events are located in zone of low anisotropy strength, suggesting 

rock “relax” after being fractured.  



3

0 

Seismic wave propagation is minimally affected parallel to the dominant fracture trend in rocks that 

have a simple one-directional fracture system (the “fast direction,” Vfast), but a maximum velocity 

reduction (the “slow direction,” Vslow) is aligned perpendicular to the oriented fractures. With multiple 

sets of fractures, such as the third orthorhombic case, velocity is reduced in all directions, and Vfast 

approaches Vslow, resulting in this type of fractured volume appearing to be an isotropic medium. This 

model implies multidirectional, interconnected fracture sets should be located in areas where there 

are smaller amounts of anisotropy. 

Tinnin et al. (2008) 

PRODUCTION LOGGING COMBINED WITH 3D  
SURFACE SEISMIC IN UNCONVENTIONAL  

PLAYS CHARACTERIZATION 

Fabric 
related 

observation 



OUTLINE 

• Introduction 

• Objectives 

• Mineralogy-based brittleness prediction from surface 

seismic data 

• Surface seismic estimation of hydraulically – fractured 

rock 

• Conclusions 
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CONCLUSIONS 
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• I propose a new (alternative) template, but it isn’t unique!!! 

• Brittleness definition doesn’t take into account rock fabric 

• Well calibration is key to having an accurate interpretation of 

the rock brittleness. 
• 2D color-bars are very useful to visualize cross-plot 

volumes. 

• Microseismic events are an indirect way to understand the 

reservoir and:  

• trend towards quartz-rich areas, avoiding clay-rich 

zones.  
• trend towards negative curvature values (green) 

avoiding the most positive curvature zones (orange) 

and following the velocity anisotropy trend. 
• are located in zone of low anisotropy strength, 

suggesting that the rock “relaxed” after being fractured. 
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