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Abstract 
 
Few natural rock properties have received more attention than porosity and permeability. The variation of these two properties is associated with 
some factors as pore space geometry and distribution, textural parameters, pore throat size and capillary pressure. In this sense, the study of the 
pore throat radii distribution, through Pittman’s equations, is useful in reservoir characterization. The aim of this study was to establish empirical 
relations and their applications in the dynamic and static flow properties, through the characterization of simple granular materials. In order to 
accurately describe the microstructural parameters of these media 16 samples were studied, and three relations were proposed after analyzing the 
2D distribution of the pore throat radii in monodisperse and spherical granular samples, with diameters ranging between 1.5 mm and 7.5 mm. 
The permeability was calculated using both, a falling-head permeameter for the volumetric media, and the Pittman’s equations for the 2D images 
of the samples. The porosity was estimated with an image-processing algorithm. Using the regression analysis, it was found that pore throat radii 
of 70%, 80% and 85% yield the best correlation for permeability, porosity and pore throat size for monodisperse granular samples. This study 
indicates that higher pore throats than those proposed by Pittman are the best representatives for estimating permeability from 2D images of 
coarse-grained granular media. 
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granular media. Note that the curve is similar from one shown on 
figure 7, which validates the proposed methodology .
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Sample 1
(R=0.75mm)
Sample 2
(R=1.75mm)
Sample 3

k=k0(1.05-VRmin/2)

37.4

37.6

37.8

38

1000 10000

Po
ro

s

Permeability (Darcies)

Muestra 3 
(R=2,0mm)
Muestra 4 
(R=3,0mm)
Muestra 5 
(R=3,75mm)

50% 
R=1,75mm, 

50% 
R=3,00mm

70% 
R=1,75mm,

30%
R=3,00mm

R=3,00mm

34.5

35

35.5

36

36.5

37

Po
ro

si
ty

 ( measure permeability.
• Permeability can be accurately determined from 2D 

images by using the empirical approximations of 
Pittman’s equations.

• It would be useful to estimate permeability from real 
thin sections. 
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Figure 7. Linear relation between k and Φ, when k 
values are graphed on a logarithmic scale. Note that k is 
higher for samples with bigger radii, while Φ increases 

as the radius size decreases. 

Figure 8. Porosity vs. Permeability for two bidisperse samples. Note that 
the high porosity of the smaller monodisperse media is responsible for 

the decreasing tendency at the beginning of the curve.  
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