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Abstract

Economic helium (He) accumulations, like hydrocarbon accumulations, result from predictable processes of generation and migration.
He-rich gas forms as a two step process: (1) generation/accumulation of He in pore water, and (2) interaction of pore water with gas.
Radioactive decay of U and Th forms He, which then diffuses to pore water. He concentration in pore water increases with increasing
U and Th concentration, increasing age, and decreasing porosity.

He is concentrated into economic gas accumulations where pore water rich in dissolved He interacts with a gas phase. Most He
quickly partitions into the gas. High He concentration in the gas is favored by high He concentration in the pore water, low gas
volume interacting with water, and low pore pressure where the gas interacts with the water. Once He is entrained in the gas, it
migrates with the gas to traps just like other gas accumulations.

Old (Paleozoic) sediments can act as efficient He source rocks and have sufficient He generation potential to account for known
economic He accumulations. He generated in the deep crust is not likely to form economic accumulations. Deeply generated He
cannot migrate to traps in overlying strata unless some fluid carries it out of the basement. Most basement is devolatilized, so there are
few settings where fluid is available for He transport.
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The following guidelines are proposed to aid exploration for high He gases. (1) Old siliciclastic sediment, not deep basement, is the
most probable source rock for economic He accumulations. Old fractured shales, arkoses, granite wash, and shallow fractured
basement are good potential source rocks. (2) The pore water must be old prior to gas interaction, preferably 100 My or more. (3) Gas
and water should interact at shallow depths to maximize He extraction from the water. (4) The total volume of gas that interacts with
the pore water should be relatively small to avoid He dilution by later gas charge. Explore in petroleum systems with marginal
hydrocarbon gas generation or near the updip limits to supercharged petroleum systems. Less gas is available in these settings, so He
concentrations will not be diluted. The validity of these controls are demonstrated by geochemical interaction models and correlations
of regional- and field-scale He concentrations in the southwest US.
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fﬁr “econfom'i He dacbcumum'fons‘ Old dfmim';?fdl shales, arkises('z ?'::'Te wash, ?rnd 1987, Broadhead 2005) ? g ' significant helium per volume of rock. This means that (1) source rock volume must be large, approximately 20 microns long in most sedimentary minerals (Ballentine and . — The Henrys constant, combined with femperature and pressure changes with depth, can be used 1
;uifo‘ge :11; ::ieor' TC;SZ':: ri]n’rC;r:ch’roizn pporeefneticclxbls; ulzcg ;:; osr. more e(gc))r(e%a\zaasg | and (2) there must be some concentration mechanism that allows dispersed helium generation Burnard 2002). Essentially all fission tracks extend to the grain surface of /\(OO to predict the ratio of the mole fraction of helium in a gas to that in water as a function of depth and c 2] §

, . . . Py . . . . _ 0.8 : . ‘
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Distribution of helium-rich gas accumulations is controlled by the same types of If essentidlly all helium is transferred from solid mmemls To pore water, S 1&y 100 +090 Dilution and Source Depletion During Gas Migration
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helium concentration in the gas. N « He 7 oo 4 P , T o 2'\°dT' C‘l’\'l‘dc"l“t‘)’”,s' : plpm :" Ofpm Tf .Tm.b”'”l'“ ( OlM 5,20 concentrates helium in the gas and causes the helium/nitrogen correlation in most > 1Ees
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FORMATION OF HIGH HELTUM GASES: A GUIDE FOR EXPLORATIONISTS SHEET 3: EXPLORATION MODELS

MODEL 1: HELTUM ACQUIRED DURING MIGRATION EXAMPLE 1: PANHANDLE-HUGOTON FIELD (MODEL 2) EXAMPLE 2: CENTRAL KANSAS (MODEL 1) EXAMPLE 3: FOUR CORNERS AREA (MODEL 3) REFERENCES
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MODEL 3: COZ-MEDIA TED HELIUM CONCENTRATION This corresponds to a source volume of 11,800 km3. This helium 0 0 20 30 4 50 60 ||=m= ., Q2 part of the Central Kansas Uplift o i 20 RGB! {Re(p) OlL-ReEr EMTIFLR7 RO Tz GIERiie) * HelN;<0.06 ;p Tczrre ?rr :‘e Iclmvedy sTha ho.wh’rraps.r . Te par’n’ruor:rs into gas I
was derived from three volumes: (a) reservoir volume the Hugoton % Np ol | (CKV) with the Anadarko basin source % Nitrogen Low-helium gases show a relatively uniform He/N, (bottom erter ar shallow depTh, higher salinitTy pore watrer, and cooler
CO»-rich gas forms near intrusives from either mantle or field, as gas expanded into the field (16,700 km?*0.3 km rock Helium-nitrogen concentration trends in the  Helium concentration in Wolfcampian and Virgilian area (Right figure). plot above). The uniform He/N, probably results from stratal temperatures.
CcO water-saturated mudrock . - 3 - i i : _ : _ . . . . . . . ] ] ] T .
decarbonation source. The CO» gas migrates updip or through thickness = 2l km.),. (b) volume ex‘r.r'ac‘.red from area 20 SE by Panhandle-Hugoton field and adjacent areas.  reservoirs near the Panhandle-Hugoton field. Gases in western Kansas and eastern Kansas have low He/N, ratios (left figure). Gases along the eastern side of the CKU and in the migration. High helium gases have a wide range of He/N,, with no High grade prospects with long fetch areas, because long
fractures/faults just like other gases. The CO, gas picks up gii exiqndln? ansdfsplu\lr}rghfr':rr(\j dOc;Nndl"I:\.fleldS.f(ZO(d)o Bnmn Jp e (kC) L%/ Panhandle field, TX c o I T western Sedgwick basin have scattered He/N, indicative of mixing between the western CKU and Sedgwick basin trends. The gases with systematic relationship to stratigraphic or geographic position. migration maximizes gas exposure to helium-bearing water.
: extraction of gas fro e hydrodynamic aquifer draining a roc 06— s L 209 1 raverse , , o . . , , , . i : , :

: - - : . | f 550% km3 W of H ’ yf. Id T(P]\ Itio] ) T 0 by Plistecireas  met i ot e ® o ] s L2 = 005 different linear He/N, trends indicate different source areas. Trends are formed by mixing migrating hydrocarbon gas with gases This pattern probably results from cross-stratal migration that * Avoid central parts of supercharged petroleum systems because
helium, nitrogen, and methane dissolved in pore water as it ULists O A0 LG 4 Cf Lalliglen el yil=el, UL A alE Sele 73 ! expansion (cf. Sarensen " from ires o o, 1964 fg. 2 5. | dissolved i ith relatively uniform He/N mixes gases with different He/N, ratios. helium will be oo diluted by methane charge. Explore along the
migrates, so He and N> increase with migration. The total gas cause the "ring” of high He around the Hugoton field. N// 2000 £ ) 'ssolved in water with relatively unitorm He/INp. . . '

/ : 1= O . .
volume decreases with migration as CO. dissolves into pore (3) An additional 0.4% helium accumulated in the volume of gas e Focussed hydrodynamic flow ° 2'2 - In1'er'pr'e1'a1'ion Helium Model edges of these systems or in reservoirs bypassed by most
| igrati > di | L : : el simisite] azdtle @ 05 ] migration.
: : : A : remaining in the Panhandle structure after expansion of gas info \ 1 g 04 ] The helium concentration patterns in Central Kansas are consistent with helium Model 1: migrating gas accumulating He at the leading The best explanation for these high helium gases is Model 3. J
water and reacts with minerals. If migration interacts with a Hugoton field. This requires a source rock volume of 8540 km3. o £ o3 ] S . L . . L Noh-f| ble helium-beari develob where the origindl - Carefully consider migration of volcanogenic CO.,, gases where
sufficiently larae volume of carrier bed. almost all CO- is This is subplied by the volumes of Wolfcampian and Virailian strata - 03 oo fel 5" edge of migrating gas. The entire section is shallow, so depth has less control on helium concentrations than migration pathway. The on-flammable, helium-bearing gases develop where the origina 2
v . . C ° Migrating CO, gas extracts He from stationary water. CO, inthe Palsri)uro btxsin (11,000 km3) and Dall’ltaarf SaEn (59500 km3) P L e Domelocks X . gg'i ] . - Arbuckle Fm. is a minor gas migration pathway compared to Pennsylvanian pathways, so helium is not diluted by high petroleum charge. The CO, gas was dominated by nhitrogen and helium (triangle plot, above shallow intrusives penetrate old strata. Prospects must be up
removed from the gas by reaction, leaving a gas rich in dissolves into water, concentrating He in remaining gas. - . L = @Ed‘ﬁ”““mm*" o _&_ - maximum He concentration in gas is consistent with the age of water in Ordovician carrier beds and their porosities at time of migration left). As CO, ir removed by reservoir reactions, Helium and Hydrocarbons . co dip from potential CO, sources and sufficiently far from the
nitrogen, helium, and trace hydrocarbons. The maximum west to the Roosevelt high and Sierra 6rande Arch, respectively. - "0 0.2 0.4 06 08 1 - g, : : TR : : . . n . 2
gen, ; Y : According fo Wiroganagud et al (1985), current hydrodynamic ctsse 4 M 2 o g (200 My old during Pennsylvanian migration; see figure on sheet 1). Interaction of gas with oil may also be responsible for the highest He nitrogen are concentrated into the remaining gas until they are the source for CO, to be consumed during migration.
helium concentration by this mechanism is controlled by the S ~ e . ' N E 1 e, | concentrations. Source rock volume is less of an issue here because total volume of helium is much less than at Panhandle-Hugoton field. : GIRGET ; : BCF of in the Four Corners Platform. Assuming 200
. . Y . ! Y . » Intrusion into or below old sedimentary rocks flow velocity immediately SW of the Panhandle field is on the e " . . | . . | ! . . g | dominant gases after long migration. Volcanogenic CO, interacted o e9 ;

concentration ratio of helium to N3 in the pore water. Helium with good helium generation potential that have order of 10 cm/y. This is sufficient to bring water across the Palo by 1 | Or'ugm.of nitrogen in low maturity gas is not w.ell understood. Nl‘rr'ogen is prol?ably derlved fr?m ammoniurm sorbed into clays durlng early with numerous stratal horizons, resulting in variable He/N,. mg' OT 26 kr% (:c ,h I r'Aq res @ SoUr | ° mlOOO
concentration can be exceptionally high. not been swept by thermogenic gases. Duro basin in about 4 My. diagenesis that is released during later diagenesis and converted fo nitrogen. Nitrogen in organic matter is refractory through the oil and Heli Bal abod m= ot shale. 55”;“'”9 source fayer [V M ACKNOWLEDGMENTS

o . . . v W Duration of Panhandle He Charge early gas window, based on N/C ratio. If nitrogen is early diagenetic, dissolved nitrogen is controlled by depositional environment and clay elium Mass Balance thick source area is 660 km?, or about 7.2 townships.
Key criteria .for' f?rmlng high helu."m gas: : late i 91-h CO d for the CO, t Helium charge from the aquifer was assumed to be a constant composition boundary condition for diffusion into a slab of gas-saturated reservoir with a low, uniform content and should be relafively constant with time after the rock has been exposed fo burial. If so, He/N, increases by one of the Estimates of helium OGIP could not be located in the There are about 25 townships in the NM-AZ part of

- Igneous intrusions that form high CO, gases from either accumulate in The L2 gas and Tor The &5 1o - 7 . . . . e : e " : i : _mari it i i Gzl literature. O BCF of heli has b duced f the Four Corners Platform west of the Hogback I thank Steve Bergman and Chris Ballentine for numerous discussions over
2 react with the carrier bed during miaration initial composition. Two traverses were selected, He concentrations measured along the traverse, and the concentrations and distances were normalized to the maximum following. mechanisms: (1) lower depositional organic productivity or predominantly non-marine depositional setting (lower N, in sediments) Itera ‘-“."e- | vera 0 ? lum gas nas been produced Trom Monocline. Structural drainaae is towards the SW th ; iy N dified f e 2000 o] A
decarbonation or mantle sources. g mia ' values of both. The normalized concentration-distance plot was fit with a diffusion model to determine the value of kt/L2. The value of k was estimated from free-gas or (2) increasing age and radioactive materials, because He increases with time whereas N, remains relatively constant. Age differences reservoirs in NW New Mexico through 2003 ( Broadhead 2005). . e 9 ' € pastyears. This presentation 1s moditied Trom ) an
He diffusion at reservoir temperature(0.0225cm?/s) and tortuosity of 5, the expected value for reservoir rocks with porosity in the 10% range. This gives a duration of t be that i tant i th K b der of itud diff Id b ired t t for the | Assuming that this is- about half the original helium in place consistent with sweep by high €O, gases from under 2005 convention presentations. Pefrotel, Inc. prinfed this poster.
: : ° : cannot be that important in southern Kansas, because an order of magnitude age difference would be required to account for the large o o _ _ o ’ :
diffusion of 5 and 20 Ma. for the two traverses. The difference is probably caused by tortuosity differences related to presence of fractures and bed continuity. He/N, differenceps, ? 7 ! ? original helium in place in economic gas accumulations is about 2 the San Juan basin.
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