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Abstract

The moisture content is an important component within the gas shale reservoir system as the amount and distribution of water can
have adverse effects on the volume of sorbed and free gas, relative permeability/diffusivity and solution gas may be a
measurable contributor to total gas in place. The variation in the effects of moisture content depends on the mineralogy,
maturity, kerogen type, and pore size distribution. To understand these variations a suite of organic-rich shales from northeastern
British Columbia have been analysed. Analysis includes organic geochemistry, mineralogy, methane sorption capacity, water
adsorption isotherms and surface area analysis.

Devonian, Jurassic and Cretaceous shales from northeastern British Columbia have moisture contents ranging from 0.5 to 15%
and methane capacities between 0.1 to 3.5 cc/g at 6 MPa. Maturity ranges from immature to overmature and TOC contents range
from 0.5 to 17 wt%. When moisture content of a shale is varied, a trend of decreasing methane capacity with increasing moisture
content is observed. However, when comparing a suite of moisture-equilibrated shales, there is no correlation between moisture
content and the methane sorption capacity. Shales can have both high and low sorption capacities with high moisture content.
Some general trends are observed; the Cretaceous and Devonian shales show methane capacity increases with moisture content
while the opposite trend is found for the Jurassic shale. These differences are due to the variation of the amount and distribution of
the water within the different shales. Water isotherms identify the range of pore sizes that contain hydrophilic sorption sites.
Hydrophilic sorption sites are concentrated within the micro- and mesoporosity as a positive trend occurs between the moisture
content and micro- and mesoporous surface area. The pore size distribution, in turn, is controlled by mineralogy, maturity,
kerogen type and mineralogy. For example, the mineralogy affects the moisture content with clay-rich shale sorbing more
water than quartz-rich shales.
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Identifying the controls and distribution of inherent moisture in gas shale reservoir systems provides an understanding of water
sensitivity and aids the overall evaluation of the reservoir with respect to one of the controlling factors of sorbed methane
capacities.



The effects and distribution of moisture
In gas shale reservoir systems

Gareth Chalmers® and R. Marc Bustin

Earth & Ocean Sciences, University of British Columbia; * gchalmer@eos.ubc.ca

Discussion and Summary

Methane sorption capacities of organic rich shales are not controlled by their moisture contents but the proportion of hydrophobic to hydrophilic sorption sites. Shales that
contain a high proportion of hydrophobic sorption sites will be able to sorb a greater volume of methane compared to shales that have lower proportion of hydrophobic
sorption sites. Shales that have high methane sorption capacities can have either high or low moisture contents. The 10 samples that have been investigated are shown in
the summary figure (Figure 16). The percentages shown in Figure 16 are the increases in methane capacity from moisture equilibrated ("wet”) to dry conditions. The greatest
increases in the methane capacity from wet to dry conditions are from the clay rich shales as the hydrophilic sorption sites (negatively charged surfaces) become available
for methane sorption when dried.

Hydrophilic sorption sites are located within pore structures that are composed of either: a) clays or b) organic matter that contains oxygen functional (aliphatic) groups
(Figures 17A-C). Maturity would have an effect on the distribution of hydrophilic and hydrophobic sorption sites (Figures 17A & B). Higher maturity sample would have a
greater proportion of hydrophobic to hydrophilic sorption sites and this would decrease the moisture content and increase the methane capacity. The lower maturity
Cretaceous shale may contain greater amount of oxygen functional groups and increase the amount of sorption sites available water but to methane when dried. More
research is needed to determine the significance of aliphatic rich TOC to methane capacity of organic rich shales.

The distribution of hydrophobic and hydrophilic sorption sites throughout the pore network would play a major role in the effect moisture would have on the methane capacity
with regard to blocking pore throats. In the two scenarios in Figures 17B & C, the methane capacity would be significantly reduced if the pore throat is hydrophilic and narrow
enough that adsorption of water molecules would block access to the potential methane sorption (hydrophobic) sites. Methane that is produced within the pore body will not
be able to move through the pore system as liquid water is harder to remove from pores as pressure decreases (shown by the water isotherms in Figure 11). If the pore
throat is hydrophobic then water will not condense in the throat and both water and methane molecules can move though the pore network.

The moisture content can play a significant role in the methane capacity of an organic rich shale as well as, depending on the hydrophobic and hydrophilic sorption site
distribution within the pore network, effect the flow of gas from the matrix to the wellbore.
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