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Abstract

Silurian (Niagaran) reefs are significant hydrocarbon reservoirs in the Michigan Basin, having produced over 490 MMBO and 2.9 TCF of
gas. Primary production from these reservoirs is typically low, averaging about 25%, due to the complex internal heterogeneity of the
reservoir. Incorporating a detailed sequence stratigraphic framework into the reservoir characterization and geostatistical modeling of these
reefs provide an enhanced understanding of the complex lateral and vertical variability of reservoir facies often observed in the subsurface,
and should lead to better reservoir prediction at both exploration and production scales.

The sequence stratigraphic hierarchy within the reefs is manifested by 4™ order high-frequency sequences (10°s of meters thick), and thinner
5™ order cycles (few meters thick) resulting from relative sea level variations. Incorporating the sequence stratigraphic framework into a 3-D
stratigraphic model illustrates the episodic nature of reef growth as exhibited by the stacked nature of framework reef and capping
grainstones, with sequence boundaries often characterized by well developed exposure horizons. In addition to a predictable facies-stacking
pattern that controls vertical reservoir heterogeneity, the reef complexes show distinct differences between windward and leeward margins,
illustrated in both the reef geometry and the resulting distribution of reservoir facies. Windward margins are steeper due to higher rates of
aggradational growth and typically contain better reservoir quality in both the reef core and fore reef facies. In contrast, leeward margins are
characterized by more gently dipping slopes made up of finer-grained facies that are of poorer reservoir quality.

The stratigraphic hierarchy plays a major role in controlling the overall quality and vertical heterogeneity of the reservoir units. Reservoir
quality in reef and capping grainstones are best developed at 4™ order boundaries due to extensive dissolution and resulting porosity
development. Capping grainstones in 5™ order cycles that are not associated with 4™ order sequence boundaries, however, generally exhibit
poor reservoir quality due to extensive cementation and porosity occlusion. Understanding of the sequence hierarchy in these Silurian reefs
provides additional insight into the episodic growth of the reefs relative to sea level fluctuations, and provides a means to better predict the
lateral and vertical reservoir heterogeneity.
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Niagaran Reefs

Good porosity and permeability in various facies but
significant reservoir heterogeneity

Regional Seal (A-2 Evaporite)

The reef play Is the most successful play in Michigan
— production of 475 MMBO and 2.8 TCF of gas
Ultimate recovery

— 1 billion BOE from over 1000 pinnacle reefs
Undiscovered resources

— 211 MMBO and 434 BCFG (USGS, 2005)
Gas storage




Fundamental Questions for
Niagaran Reefs in the Michigan Basin

1. What are the controlling factors on the
deposition of Silurian Pinnacle reefs ?

— Reef evolution (continuous growth vs. episodic)

— Sea level control on facies types (circulation and
bathymetry) and architecture

2. Do these controlling factors create complexity In
the reservoir architecture of the reef?

— What factors contribute to the variability in porosity
& permeability ?

—  Correlation to facies type?

— Patterns within sequence framework?



Regional Setting
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Previous Niagaran Reef Models
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Balogh (1981)

*Focus was on models for reef growth and facies distribution

Stacking patterns start to become recognizable in early models, but
they were not focus of earlier studies



Niagaran Reef
Seqguence Stratigraphy



Stlurian Sea Level

Three eustatic sea level
fluctuations occurred
during the Niagaran

(Wenlockian) and into the
Ludlovian.

Modified from Ross & Ross, 1996
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Stratigraphic Control on Porosity
and Permeability

3rd Order
4th Order

Mudstone
Wackestone
Packstone
Grainstone

increased
& k

N
/ >decr%(asked
/ _/

Ritter (2008)




Modeling




* Fields Modeled:
— Ray Reef (Wold, 2008)

— Belle River Mills
(Qualman, 2009)

» Data:
— Wireline Logs

— Facies (from core)

— Porosity/permeability from
whole core analysis and
minipermeameter

— Sequence stratigraphic :
architecture (timelines) \ — Suflumberger |




Sequence Framework — Ray Reef

« Skeletal Outline of the Model constrained by sequence boundaries
« Surfaces honor the geometry of the reef from reef crest to the off-reef position

« High Resolution porosity, permeability, and facies data incorporated into model
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Niagaran Reefs in Southern Trend: Ray Reef
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Niagaran Reefs in Southern Trend: BRM
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BRM Data

e 12 cores with detailed
facies descriptions

e 54 Gamma Ray and
Neutron API Logs

e ¢/k measurements from
35 core analysis reports

Qualman (2009)



Facies Distribution constrained by Sequence
Architecture
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Porosity Distribution constrained by
Sequence Architecture
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Permeability Distribution constrained by
Sequence Architecture
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Faclies Pore Architecture

-Image Analysis
-Sonic Velocity



Carbonates have varying pore types
that influence permeability

Eberli, 2000



Location of Wells
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Pore Architecture tied to
Petrophysical Properties

Relate rock fabric to pore types by developing
petrophysically significant facies

Relate pore architecture to pore connectivity
(permeability) to determine reservoir quality

Use laboratory and log measured sonic velocity
to establish a first-order relationship between
sonic velocity and pore-type/pore-network
connectivity




Image Analysis

* Macropore shape affects overall permeability

* The more spherical pores that exist, the less
connectivity (lower permeability)

Scholle and Ulmer-Scholle, 2003



Comparison of Pore Shape Parameter (y)
to Permeability

*The roundness/sphericity parameter

from the image analysis program is a _ 0
ratio of the pore perimeter to the pore (I) 20 /0

are y ~ 2.40

Roundness/”sphericity” =
Perimeter”2 / (4 *t* Area)

*However, another study by
Anselmetti et al. (1998) suggests a
similar roundness/”’sphericity”’/shape
parameter

o ~ 20%
v= Perimeter / (2 * N(n* Area)) Y~ 1.06

Scholle and Ulmer-Scholle, 2003



Charlton 4921’ IA Porosity:
Top: 1.8%
Bottom: 4.2%

Roundness: 1.7

Fugere 4335’ |IA Porosity:
Top: 2.7%
Bottom: 2.75%

Roundness: 1.5

Miller-Fox 3611’ IA Porosity:
Top: 5.6%
Bottom: 3.2%

Roundness: 1.2



Pore Size vs. Gamma
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Velocity versus Porosity in Carbonates

m Carbonate rocks
e Compacted mud samples
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Combined Velocity Histogram of all Facies for all Wells
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*\ariations in pore type can be
observed in the sonic signal

*Pore architecture and connectivity
affect permeability

Inverse relationship between
velocity and permeability

*Trend develops in sequence
stratigraphic framework
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Summary

Reservoir quality has a direct correlation to primary
depositional facies

Because of this, the predictability of reservoir
distribution, both laterally and vertically, may be
enhanced by the development of a sequence stratigraphic
framework

Porosity and permeability (i.e., reservoir quality) Is a
direct function of pore architecture, which again is often
tied to primary depositional facies and/or position within
a sequence stratigraphic framework

Detailed characterization of pore architecture should
lead to a better understanding of the 3-D distribution
and connectivity of pores — image analysis and CT scans,
along with laboratory-measured Vs, may lend insight
Into the acoustic properties of different reservoir and
non-reservoir facies



Conclusions e

 Reef development é j
during the TST/HST * ﬁ

« Evaporites were | .
deposited during LST EXPOSURE

Sea Level Fall

* Reef development
reestablished, and off-
set from the original
reef

.

—— PROGRADATION

Sea Level Rise
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