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Abstract

Incised-valley systems form in response to sea-level fall, as fluvial systems extend across newly subaerial shelves to the lowstand
shoreline and shelf margin. Recent work on Late Quaternary systems of the Gulf of Mexico passive margin illustrate how sediment
supply might change over the course of a glacio-eustatic cycle, and how the evolution of incised-valley systems modulates source-to-
sink sediment routing to deepwater environments through processes of storage and export of sediments on the coastal plain and inner
shelf.

First, empirical data on links between sediment supply and climate suggests supply from the hinterlands should decrease during
glacio-eustatic sea-level fall and lowstand due to temperature depression. Hence, total supply from the hinterland may be (a) at a
maximum when river mouths reside in highstand positions, and sediment storage takes place on the coastal plain and inner shelf, and
(b) at a minimum during time periods when river systems are extended to the shelf margin lowstand shoreline and directly feeding the
slope and basin floor. Second, incised valleys form in a step-wise manner, with short periods of incision punctuated by extended
periods of lateral channel migration and valley widening, and with contemporaneous deposition of channel-belt sands. The total
volume of sediment exported during the period of incised-valley formation is a relatively small value compared to the ongoing flux
from the hinterlands, and short periods of incision likely produce an insignificant amount. However, periods of lateral channel
migration and valley widening significantly increase the export of sediment, perhaps by 25% or more, such that falling-stage fluvial
deposition corresponds to increased sediment delivery to the shelf margin and beyond. Finally, for low-gradient continental margins
with broad shelves, like those of the Late Quaternary Gulf of Mexico, drainage basins merge as channels extend across the shelf,
which will in turn result in increases in the drainage areas that contribute to single point sources at the shelf margin. Apparent signals
of increased or decreased flux of sediment to the shelf margin and beyond may therefore reflect geomorphic response to sea-level
change - the merging of drainages as they transit a broad shelf - rather than changes in sediment supply from the hinterland.

Copyright © AAPG. Serial rights given by author. For all other rights contact author directly.
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incision and sediment bypass during relative sea-level fall with no fluvial deposition
excavation of valley was seen as an important sediment source to lowstand fans

after Posamentier and Vail, 1988




FLUVIAL SYSTEMS AND SEDIMENT SUPPLY

Incised Valleys as Conveyor Belts or Vacuum Cleaners
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after Blum and Térnqvist (2000)




COLORADO-BRAZOS INCISED VALLEY
Last 100 kyr Glacial-Interglacial Cycle
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FLUVIAL SYSTEMS AND SEDIMENT SUPPLY

Relative Importance of Conveyor Belts and Vacuum Cleaners

Vacuum Cleaner Supply
volume = 22.5 km3

1700 kg m3

60 kyrs

38.2 x 10° in 60 kyrs

Conveyor Belt Supply
yield = 120 t km=2 yr?
area = 110,000 km?
supply = 12 x 106t yr-1
time = 60 kyrs
CB = 72 x 10%% in 60 kyrs

Vacuum Cleaner

~ 5%
Conveyor Belt S0

after Blum and Térnqvist (2000)




FLUVIAL SYSTEMS AND SEDIMENT SUPPLY

Incised Valleys as Conveyor Belts or Vacuum Cleaners
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after Blum and Térnqvist (2000)




TEXAS COAST SYSTEMS TRACT EVOLUTION

Last Interglacial Highstand Last Glacial Falling Stage
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after Blum and Aslan (2006) and Anderson and Fillon (2004)



TEXAS COAST SYSTEMS TRACT EVOLUTION

Last Glacial Lowstand Holocene Transgression and Highstand

after Blum and Aslan (2006) and Anderson and Fillon (2004)



LONG PROFILE RESPONSE TO SEA-LEVEL CHANGE
Geometric Forcing of Incised Valley Formation

net degradational reach where long profiles reflect
tectonically- and isostatically-controlled incision rates
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after Blum and Toérnqvist (2000)




INCISED VALLEYS AND VALLEY FILLS

Form from Fluvial-Deltaic Transit of the Shelf
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INCISED VALLEYS AND VALLEY FILLS

Form from Fluvial-Deltaic Transit of the Shelf
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INCISED VALLEYS AND VALLEY FILLS

Form from Fluvial-Deltaic Transit of the Shelf
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INCISED VALLEYS AND VALLEY FILLS

Form from Fluvial-Deltaic Transit of the Shelf
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KEY TOPICS OF
DISCUSSION
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THE BOQART MODEL

(Syvitski and Milliman, 2007)
« This model can be applied to provide a snapshot “first draft”
estimate for the last glacial maximum.
e NeedB,OQ, AR, T

Q. = 0.0006 BQO-3LA05RT

Where: Q. = Sediment Discharge or Load (MT/yr)
B = IL(1-T)E,

Glacier Factor (area covered by glaciers)
Lithology Factor (values of 0.5-3)

Trapping efficiency of lakes and reservoirs
Human factor

Mean Water Discharge (km3/s)
Drainage Area (km?)

Maximum Relief (km)
Basin-averaged Temperature (° C)

o mer = |




PREDICTED CHANGES IN SEDIMENT YIELDS

Full Glacial to Full Interglacial Climate Change
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« BQART model predicts lower supply during cooler climates (10-40%)
e minimum supply during glacio-eustatic sea-level lowstand
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HOW DO YOU FORM AN INCISED VALLEY?

channel incision
and cross-shelf extension with

o sediment bypass
no significant lateral

migration forms a
narrow v-shaped
Incised channel

* how long can
this go on?

* how do you form a
valley-scale feature?




HOW DO YOU FORM AN INCISED VALLEY?

Deposition During Falling Stage: Lessons from the Trinity River, Texas
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HOW DO YOU FORM AN INCISED VALLEY?

Middle
Deweyville
Terrace




HOW DO YOU FORM AN INCISED VALLEY?

Composite Valley Fills: Lessons from Data and Experiments
St. Anthony Falls Lab

Colorado River, Texas

Late Highstand
- alluvial plain construction and avulsion

paleosol ¢ \filled paleovalley paleosol

Falling Stage and Lowstand
- multiple channelbelts in an incised valley

Transgression and Early Highstand
- valley filling and multiple avulsions
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after Blum (1991, 1994), Blum and Price (1998)

after Strong and Paola (2006; 2008)




HOW DO YOU FORM AN INCISED VALLEY?

channel incision and valley widening by
cross-shelf extension with channel migration and
sediment bypass channel-belt formation

step-wise incision, lateral migration, and channel-belt formation widen the
incised channel into a valley-scale feature

valley widening and channel-belt deposition are simultaneous

basal valley-fill surface is a composite surface that is strongly time-
transgressive, but it is the same age as the deposits that overlie it




VALLEY EVOLUTION AND SEDIMENT SUPPLY

Importance of Incision vs. Lateral Migration and
Contemporaneous Channel-Belt Deposition

initial delta plain or emergent shelf surface

STAGE 1 net sediment exported
INCISION by channel incision

subaerial subaerial
exposure exposure

net sediment exported by lateral
STAGE 2 migration and channel belt deposition

LATERAL
MIGRATION

channel-belt sand

e periods of incision produce little extra sediment to be exported
e periods of lateral migration and channel-belt construction produce
significant sediment to be exported




VALLEY EVOLUTION AND SEDIMENT SUPPLY

 total sediment export is a small number, but it occurs stepwise

e periods of lateral migration and channel-belt deposition actually produce
significant sediment to be exported (10-20% increase over background flux)

e mass balance basis to couple falling stage fluvial and deltaic deposition




VALLEY EVOLUTION AND SEDIMENT SUPPLY

Sediment Export from Incised Valley
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« BQART model predicts lower supply during cooler climates




VALLEY EVOLUTION AND SEDIMENT SUPPLY

Sediment Export from Incised Valley

'Qg with sediment export during
periods of channelbelt formation

AT and a direct climate-driven
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« BQART model predicts lower supply during cooler climates
* Periods of incision add little additional sediment
* Periods of valley widening can augment lower supplies by 10-20%
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FIRST DRAFT HIGHSTAND SEDIMENT BUDGET:
Colorado and Brazos Rivers, Texas

Guada. Lavaca Colorado Brazos Trinity Sabine

13'yr 'r

All Sediment Sequestered on Inner Shelf

Margin

Starved Slope and Deep Basin

Blum and Womack (2009-in press)




DRAINAGE BASINS OF THE TEXAS COAST
Lowstand Conflguratlons

Brazos River
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Blum and Womack (2009-in press)




FIRST DRAFT LOWSTAND SEDIMENT BUDGET:
Colorado and Brazos Rivers, Texas

Guada. Lavaca Colorado Brazos Trinity Sabine

Shoreline

~63% sequestered in delta
~37% unaccounted for

SIOpe and Deep Basin  Blumand Womack (2009-in press)




CONCLUSIONS

» Total sediment supply from the hinterlands should decrease
during sea-level fall and lowstand due to temperature
depression.

» supply from the hinterland may be at a maximum when river mouths
reside in highstand positions, and storage takes place on the coastal
plain and inner shelf

supply from the hinterland may be at a minimum when river mouths are
extended to the shelf margin and directly feeding the slope and basin
floor.

 Incised-valley evolution plays a role in sediment routing to the
shelf margin and beyond in at least 2 distinct ways:
periods of incision DO NOT increase sediment supply

however, periods of valley widening AND fluvial deposition DO increase
sediment supply by 10-30%

merging of channels on wide shelves will increase drainage area, which
will increase sediment supply to point sources at the shelf margin






