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Abstract

Linking basin-restricted subaqueous flows to external controls governing their initiation is difficult. Even though the influence of these
controls (tectonics, eustasy, and climate) is best resolved in the basinal strata, internal controls (i.e., gradient, substrate mobility, topography
and flow run-out length) can have a more profound effect on deep-water sedimentation style and resulting patterns. Source-to-sink
correlations relating tectonic, eustatic and climatic forcing to deep-water facies, lithology, sedimentary bodies, and stratigraphic cycles were
analyzed from 488 sedimentological profiles and detailed (20-m thick) mapping of continuous shelf-to-basin outcrops (255-km? area)
correlated (355 well logs and 3300 km of 2D seismic) across the 33,500-km” Delaware Basin.

The record of external forcing, resolved in basinal strata, is obscure outside of the basin, and is only confidently isolated from internal
controls through complete basin analysis. Tectonic movements controlled the staggered onset of deep-water clastic sedimentation from at
least seven shelf feeders encircling the Delaware basin. Basin-restricted siltstone intervals correlated throughout the basin help define a
threefold hierarchy of stratigraphic cycles within the Brushy Canyon lowstand systems tract (LST) of one 3rd-order composite sequence (1-
2 my.). Although along-strike variations in sediment supply change the thickness, lithology and architecture of these basinal cycles,
stratigraphic changes in multiple criteria permit regional correlation that reflects basin-scale sea-level change. Repetitive, multi-scale and
organized clustering of varve-like laminations, present in carbonate, evaporite and clastic strata, reflect precipitation-modulated climate.

Stratigraphic changes in multiple criteria correlated throughout the basin suggest an evolution in sedimentation attributed to changes in

relative sea level, which can be correlated across the Delaware basin. Younger carbonate MTDs of the Cherry Canyon Formation incise the
Brushy Canyon LST top and resemble those at its base; both of which record mass failure during highstand outbuilding of carbonate ramps.
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Siltstone, resembling the basal drape, also is found at the LST top. Condensed sedimentation, recorded by the basal siltstone drape, most
likely correlates to continual sea-level fall separating highstand and lowstand deposition, whereas the younger siltstone records the end of
gradual sea-level rise and represents a downlap surface for the overlying Cherry Canyon LST. This is indicated by strata in the upper 100m
of the Brushy Canyon LST showing an upward increase in shelf-derived carbonate allochems (>50%), a decrease in sand percent (<40%),
and an increase in the thickness and organic richness of siltstones (>300%). This latter attribute suggests a decreased frequency of sandy
subaqueous flow deposition. Furthermore, stratigraphically equivalent strata derived from the same shelf feeder system yet source-distant,
show a doubling in silty sandstone and feldspar content that records hydraulic fractionation of grain size and mineralogy within these
subaqueous flows. In this case, longitudinal fractionation was enhanced by more complete flow transformation enabled by transport along
smoothed depositional profiles during late LST. Both slope expansion and back-stepping of aggradational upper-slope channels record
decreased system efficiency, while more elongate basin-floor thicks in this upper part reflect the decreased sediment volume. These
depositional patterns record a gradual sea-level rise and suggest that its onset commences within the LST. Organic-rich sand-poor basinal
facies bracketing this LST could have been deposited during either sea level rise or fall because they simply record sediment starvation; this
is only indirectly related to an extrinsic control.

As the ultimate sediment sink with a fragmented shelf record, these external controls are best resolved from the basinal record, but internal
changes in gradient, substrate mobility, topography, and run-out length, have a greater impact on subaqueous flow behavior, which requires
complete characterization of the basin to differentiate from external signatures.
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The “Holy Grail” of Stratigraphy

Source eUnderstanding the controls on
patterns and trends in stratigraphy.

§° ¢ -The challenge is to link facies
! _distributions, architectures and
geometries to formative processes.

‘ 4 «This requires differentiating external
. from internal controls on stratigraphy.
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Complete Analysis ofi Deep-Marine System Required
to Differentiate External from Internal Controls

NP e =
AL & A

jL / > 9 MS and 4 PhD geological, petroleum
' engineering & geophysical studies

> 507 sedimentological logs most w/
scintellometer profiles tied to 300
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multiple fault blocks generated 3D
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Complete Analysis ofi Deep-Marine System Reqguired
to Differentiate External from Internal Controls
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Complete Analysis ofi Deep-Marine System Required
to Differentiate External from Internal Controls
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View Note for Slide 8 (Page 10)

omplete Analysis of Deep-Marine System Required

to Differentiate External from Internal Controls
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Complete Analysis ofi Deep-Marine System Required

to Differentiate External from Internal Controls

105 104

o | — isplay of Brushy Canyon Fm at gk
wwesT SHE- :
NOR | miles east of outcrop

*
+ ofe , B, s -
- y ot
3 ! ."‘ 3 *
-
N y ]
ey . " .
v
+ .""u:. '
+, ;:
& L] *
- -
‘l.; .
- e
+ * abb‘ )
.
» *u.
* s
*
+
+
1

: DELAWARE Scol
S % -

BASIN

I Fhnzhs
@ Outcrop Section D Romans (2003) study area
@ Well Data
2D Seismic line
- Johnson (1998)




Stratigraphic Framework: Second- and Third-Order

Stratigraphic Cycles
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Stratigraphic Framework: Hierarchy of Stratigraphic Cycles
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Phases of Submarine Fan Evolution
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External Controls
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Fine-grained Facies & Lithology Record Climatic
Modulation of Carbon and Hydrologic Cycles
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View Note for Slide 16 (Page 18)

Deep-marine Laminites record 15 m.y. of
Monsoonal Climate Change
SHELF

Guadalupian

Leonardian

SHELF

Fermation

Delaware Mountain Group

BASIN

VWestern Western .
Shelf Delaware Basin

Outcrop Qutcrop

Bell Canyon
Formation

Hin Group

Chermy Canyon
Formation

=

are WMount;

]

Eastern
Delaware
Basin
Subsurface

Bell Canyon
Formation

Cherry Canyon
Formation

Chemy Canyon
Tongue

MIDDLE BC

LOWER BC

Bone Spring Formation

Central
Basin
Platform
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Plate Collision (Marathon Orogeny) and Subduction
Combine to Segment the Permian Basin into
Foreland Sub—Basins
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Generalized Tectonic Map and Structural Cross
Section across Delaware and Midland Basins
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Deep-Marine Depocenters Shift Due to Decreased
Subsidence from Delaware te Midland Basins
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View Note for Slide 20 (Page 22)

Clockwise Shift in
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Depocenters In
Delaware Basin
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Internal Controls
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Setting the Stage: Carbonate Platforms
Rimming Delaware Basin Affect Sea-Floor

Topography
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Organic-Rich Siltstone Drapes Carbonate Mass
Transport Deposits and Forms Most Diachronous
Surface Within Deep-Marine Succession
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Progressive Sandstone Pinch-outs & Facies
Change at Base of Deep-Marine Eplsode
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Progressive Sandstone Pinch-outs & Facies
Change at Base of Deep I\/Iarlne Eplsode
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Deep-Marine Sands In-fill Seafloor Topography.
Generated by Mass Transport Events
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Sediment bypass across inherited
carbonate slope in lower and middle
Brushy Cyn replaced by
sedimentation and expansion of
constructional slope in upper Brushy
Cyn depocenter




Equilibrium Profile for Submarine Fan
Sedimentation in Basin

Brushy Canyon Equilibrium Profile Across 185 Km Delaware Basin
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View Note for Slide 33 (Page 35) . »
EHanges In Submarine Channel Architecture Related

to Internal Changes in Local Basin-Floor Gradient
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Changes in Submarine Channel Architecture Related
to Internal Changes in Local Basin-Floor Gradient
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Changes in Submarine Channel Architecture Related
to Internal Changes in Local Basin-Floor Gradient
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Depositional Gradient Changes
and Knick-point Migration

Click on black rectangle to view movie.

BRAIDED STREAM

Provided by: Chris Paola
St. Anthony Falls Laboratory
University of Minnesota

Experimental basin (XES) is 3 m wide, 6 m long.
Water and sediment supply is continuous.
Basin floor subsides continuously during
experiment. Total elapsed time is 45 minutes.


http://www.encyclopedia.com/video/WDXs2LEe0Gk-braided-stream-sediment-flume-experiment.aspx
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Conspicuous increase In silty sandstone (olive
green) In Upper Brushy Canyon distributary
channels and lobes forming sandstone sheets

L BC sand-silt partitioning reflects competence controlled deposition
from subaqueous flows heavily influenced by inherited local
topography

‘UBC sand-silt mixing reflects capacity controlled deposition from
more fully evolved subaqueous flows recording longer run-out
lengths across smoother profile.



Increased Feldspar, Silt Fraction, Carbonate mud,
and Organic Matter Related to Hydraulic

Fractionation and Longitudinal Floew Transformation
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Increased Feldspar, Silt Fraction, Carbonate mud,
and Organic Matter Related to Hydraulic
Fractionation and Longitudinal Flow Transformation
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Conclusions

« Climate control on fine sediment fraction,
organic matter and laminites

« Tectonic control on timing of deposition of
coarse sediment fraction and aspect ratio
of basin fill

« Eustatic control related to Gondwanan
deglaciation w/basin-wide sea-level
change reflected In correlation of
threefold stratigraphic hierarchy across
seven shelf sediment sources




Conclusions

Climate, Tectonic and Eustatic signatures best
resolved from the deep-marine record, require
complete basin analysis of high density data

Depositional limit of fan and lobe sedimentation
produces internal changes in gradient and knick-
point migration affecting submarine fan architecture

Changes in longitudinal profile affect flow behavior
and basin sedimentation

Internal controls increase the uncertainty in the
interpretation of external controls
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Notes Accompanying Slide Presentation

Slide 8 of 49 (Page 10 of 52)

This represents the integrated outcrop and subsurface database used for analysis of external and internal controls.

To evaluate these changes requires a robust stratigraphic framework, as illustrated by the seismic line from the Cabin Lake 3D dataset and
introduced in the subsequent slides.

Return to Slide 8 (Page 10)

Slide 13 of 49 (Page 15 of 52)

We will view these maps in a different context when we examine the role of depositional topography on patterns of sedimentation

This is the framework upon which we will analyze the aforementioned external and internal controls on sedimentation.

Of note is the lack of overlap between values from Brushy Canyon Formation samples and values reported from both Permian Tasmanites
green algae and Quaternary low-latitude, arid, coastal-upwelling zones.

The absence of overlap between d13Corg values of the Brushy Canyon Formation and Quaternary values from coastal upwelling zones of low-
latitude, arid settings (the Delaware Basin is also interpreted as arid, low-latitude) suggests that the Delaware Basin was not an area of active
upwelling in Brushy Canyon time.

The ORS intervals are interpreted to reflect deposition of marine organic matter associated with modest rates of surface water production and
eolian derived silt.

Bottom and pore water chemistry was likely dysoxic, and degradation of organic matter at the seafloor and in the sediment reduced the amount
of carbon supplied to the seafloor. Not all the organic material was respired; the siltstones have an average TOC of about 1.5%. This
enrichment is interpreted to reflect extreme condensation, in comparison to typical black shale facies, with respect to siliciclastic and carbonate
fractions.

Return to Slide 13 (Page 15)

Slide 16 of 49 (Page 18 of 52)
Siliciclastic delivery to the Delaware Basin is characterized by two modes: (1) episodic sand delivery by sediment gravity flow and (2) settling
of eolian derived silt (Fischer and Sarnthein, 1988).
Light-grey layers are dominantly gypsum; dark laminae are calcite and admixed organic matter.
Doug Kirkland, UT Dallas: “During the season of high relative humidity, more marine groundwater entered the lake through the permeable reef
barrier than exited as reflux and, secondarily, as evaporation. Consequently, the lake level rose by up to several meters to sea level. The
‘refreshening’ decreased salinity and replenished dissolved CO2 — the critical nutrient limiting growth of indigenous phytoplankton. Algae
proliferated, pH increased and CaCO3 precipitated. It mixed with organic matter to form a thin, dark lamina.
“The couplets are inferred to have been deposited within 1 year time based on:

(1) similarity to lacustrine varves, marine varves and tree rings;

(2) cyclicity,

(3) regularity and lateral persistence,



(4) carbon and oxygen isotopic profiles;

(5) thickness matches reasonable annual rates of evaporite deposition.
“Any hypothesis calling for a period less than or more than 1 year would be exceedingly difficult to support.
“The different varve types recur with a period of 1800-3000 years reflecting climatic changes on a millennial time scale. Millennial cycles have
a period of 1800-3000 years, based on varve counts, and a typical thickness of about 4 m.
“During the season of low relative humidity, tens of cubic kilometers of water evaporated from and, secondarily, leaked out through the
surrounding reef.
“Directions of prevailing northwest monsoonal winds during the Castile dry winter season and the Castile humid summer winds to the
southeast.”
Magaritz et al. (1983) report d13Corg results in the range of —28.4 to —29.1 per mil from the Bell Canyon Formation. They interpret these
results to reflect ‘normal’ conditions of the oceanic-carbon cycle.
Positive shifts in both the §13Corg and 813Corg upsection are, therein, interpreted to reflect increased deposition of isotopically light organic
matter in the Delaware Basin and, perhaps, globally.
The positive relation of isotopically light marine OC and elevated atmospheric pCO2, as hypothesized by Dean et al. (1986), does not appear to
apply to marine OC of the Permian, a period of pCO?2 partial pressures near modern levels (Berner and Kothavala, 2001).
Monsoon systems accompanied the formation of supercontinents such as Pangaea, with their extreme continental climates. Summer monsoons
are directed onshore and produce copious amounts of rain for generation of sediment gravity flows. Winter monsoons are directed offshore and
cause drought and deposition of eolian silt and increased surface water productivity.
Increased sea surface temperature increases monsoon intensity.
Times of high dust influx and reduced soil development coincided with strengthened winter monsoon conditions, which are inferred from
variations in loess grain size.
Times of decreased dust accumulation and strong pedogenesis, marked by high values of magnetic susceptibility, represent times of
strengthened summer monsoon conditions.
Return to Slide 16 (Page 18)

Slide 17 of 49 (Page 19 of 52)

Though the structural fabric inherited from the failed aulacogen might explain basement uplifts oriented perpendicular to the northward-
directed deformation front, when combined with: eastward decreasing subsidence, regional uplift.

Basement cored uplifts in the western interior of North America points to the western and not southern plate boundary as the causal mechanism.
Return to Slide 17 (Page 19)

Slide 20 of 49 (Page 22 of 52)

Despite the tectonic control on the timing of sediment delivery to the basin, the hierarchy of stratigraphic cycles outlined in the previous slides
can be correlated across the seven shelf sediment sources which point to a record of relative sea level change that can be correlated across the
basin.

Return to Slide 20 (Page 22)



Slide 21 of 49 (Page 23 of 52)

Good correlation across continents for the pre-Brushy carbonates,

Record of Brushy Canyon sea level change not recorded in the shelf record.
Return to Slide 21 (Page 23)

Slide 22 of 49 (Page 24 of 52)

The positive relationship between OC enrichment and higher Ti/SI ratios, especially in the distal settings and sea level rise at third, fourth, and
fifth order cycle boundaries. However, the correlation of sea level and TOC is not as strong at the scale of Sth-order cycles, as it is in the 3rd-
and 4th-order cycles.

Causal relationship between sea level rise.

Shift in depocenters to slope during the retreat phase.

Sediment-starvation related to the absence of sediment-gravity-flow deposits.

Ti/Si ratio is a proxy for siliciclastic flux in traction-suspension regimes, where higher values have been interpreted to reflect greater flux of
detritus.

Yet, there is no consistent relationship between TOC and any of the siliciclastic proxies on an all-encompassing sample basis.

One might expect some relationship given interpretations of siliciclastic sedimentation rate as a primary factor leading to organic enrichment
(fast- Bohacs et al., 2005; slow — this study).

Return to Slide 22 (Page 24)

Slide 33 of 49 (Page 35 of 52)

Slope channel architecture documented from middle Brushy Canyon outcrops in the central Delaware Mountains and captured in the RAP
outcrop reservoir model. The multilateral and multistory architecture at the Popo Fault Blocks is shown here and in subsequent displays. The
Fan 5 multistory channel complex at Colleen Canyon is considered representative of the channelized sheet architecture.

The timing and style of channel deposition in major versus minor sandstone fairways are controlled, to a large-extent, by fairway-scale
compensation, related to Sth-order IGR patterns. In general, major fairways, dominated by confined channel complexes, are the primary site for
deposition and build substantial topography during the growth phase. During the retreat phase, flows are preferentially focused into the lower,
minor fairway areas, where deposition is dominated by weakly confined, depositional channels.

Return to Slide 33 (Page 35)
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