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Abstract 
 
We present a 2D numerical model of a flat-ramp-flat thrust system that includes mechanical stratigraphy and inter-layer friction to 
investigate the effects of rheology, friction and ramp angle on the geometry of ramp associated folds. This work is part of our study on 
structural processes in reservoir rocks by numerical simulations with Abaqus finite element code. Part I discusses rock rheology and 
benchmark simulations, and Part II investigates fracture propagation into a sequence of damaged rock layers. 
 
Analysis and restoration of fault-fold systems requires understanding of the mechanical processes associated with their development. 
In our calculations we use in-situ conditions including relevant dimensions, gravity, deformation rates, inter-layer friction, and rock 
properties of Berea Sandstone, as a realistic elastic-plastic-damage rheology (Part I, Busetti et al.). The thrust fault-zone is modeled by 
a weak layer (representing salt or clay) with a visco-plastic rheology calibrated with experimental results of rock salt (Carter et al., 
1993). 

Copyright © AAPG. Serial rights given by author.  For all other rights contact author directly.

http://www.searchanddiscovery.com/documents/2010/40485heesakkers/22_0_04_Elast_HalfPull_MaxS.wmv
http://www.searchanddiscovery.com/documents/2010/40485heesakkers/22_0_04_Plast_HalfPull_LEmax.wmv
http://www.searchanddiscovery.com/documents/2010/40485heesakkers/22_0_04_BereaSS_HalfPull_LEmax.wmv
http://www.searchanddiscovery.com/documents/2010/40483busetti/ndx_busetti.pdf
http://www.searchanddiscovery.com/documents/2010/40483busetti/ndx_busetti.pdf
http://www.searchanddiscovery.com/documents/2010/40484busetti/ndx_busetti.pdf
http://www.searchanddiscovery.com/documents/2010/40484busetti/ndx_busetti.pdf
http://www.searchanddiscovery.com/documents/2010/40483busetti/ndx_busetti.pdf
http://www.searchanddiscovery.com/documents/2010/40484busetti/ndx_busetti.pdf
http://www.searchanddiscovery.com/documents/2010/40483busetti/ndx_busetti.pdf
http://www.searchanddiscovery.com/documents/2010/40484busetti/ndx_busetti.pdf


In a typical model, we consider a system of a flat thrust, 60-80 km long, with a 5-45 degrees ramp in its center. The sedimentary 
hanging wall is up to 14 km thick with individual alternating layers 1-2.5 km thick each. The footwall consists of a 5 km thick 
competent, elastic basement. In the simulations, the hanging wall is transported horizontally up to 16 km over the basement ramp in a 
quasi-static mode. 

The structural geometry and the associated patterns of stress, strain and damage are explored as a function of basal friction (of the 
thrust fault-zone), inter-layer friction and fault ramp angle. The main results show that (1) large inter-layer friction significantly 
reduces the fold amplitude leading to a flat crest above the ramp-flat transition; (2) high basal friction leads to asymmetric folding, 
whereas low basal friction leads to symmetric folding; (3) high amplitude folds occur for ramp angles that are 10 to 30 degrees; (4) 
steep front limbs develop for ramp angle > 30 degrees. 
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ConclusionsConclusions

G l b tiGeneral observations

Rheology
1) Symmetric folding for elastic rheology

2) ↑ ↑ material softening =  ↑↑ asymmetric folding = ↑↑ dilation

3) ↑ ↑ material softening =  ↑ ↑ forelimb steepness

4) Max curvature away from the ramp for Berea SS) y

Inter-layer friction

1) ↑↑ f i ti ↓↓ f ld lit d1) ↑ ↑ friction = ↓ ↓ fold amplitude

Field application
If a final ramp related fold geometry is known we can predict:

- Associated boundary conditionssoc a ed bou da y co d o
- Area’s of intense fracturing / faulting




