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Abstract 
 

Mars, Mercury, the Moon, and many satellites of gas giants Jupiter, Saturn, and Uranus, are scarred with giant impact basins that 
record collisions from asteroids during the early history of the solar system. Giant impact basins, typically hundreds to thousands of 
kilometers in diameter, are associated with distinctive morphological features, including multiple concentric rings, radially distributed 
scour valleys, fractures and radial graben, crater chains, and large (>20 km in diameter) secondary craters. Impacts that formed giant 
basins commonly resulted in deep excavation and fracturing of planetary crusts, forming conduits for later upward migration of 
magma plumes and subsequent basin infilling with lava. For example, most giant nearside lunar basins that formed between 3.8 and 
4.3 billion years ago are partly filled with basalt. The Serenitatis Basin contains a succession of layered extrusive units that are 
collectively 2 to 4 km thick, 750 km in diameter, and 300,000 to 500,000 km in volume. Some giant impact basins are also associated 
with antipodal features caused by propagation of compressive waves through the planetary interior. These features include hilly, 
lineated, and jumbled terrain, as observed in areas antipodal to the Caloris Basin on Mercury. Swirled terrain and remnant 
paleomagnetism are observed on the Moon in areas antipodal to the Imbrium Basin. In addition, some recent features on the Moon, 
such as Ina, antipodal to the South Pole-Aitken Basin, are inferred to have been caused by degassing of volatiles (important materials 
for sustaining human settlement) in areas of weak and fractured crust.  
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Lunar
Impact Origin

•  Density differences

•  Volatile depletion

•  Isotopic similarit ies

•  Lunar orbit
inclined 5º



Hadean Eon: 3.8–4.56 Ga

Steven Hobbs

•  Saturation cratering to
at least 4.2 Ga

•  Earth crustal formation

•  Early bombardment phase

•  Crust-mantle differentiation

•  3.8 Ga: end of late
bombardment phase



Late Heavy Bombardment

William Hartmann

4.0–3.8 Ga



Late Heavy Bombardment

Haskin, 
Cohen et al.

Nectaris (3.90 Ga)
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Orientale Basin 
USGS lidar map

Lunar Orbiter 4
200 km

Basin rings

Secondary crater
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Crisium Basin: Asymmetry 

USGS lidar map

Scours, crater chains,
and valleys

Secondary crater

Basin rings
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Grazing impact ejecta

Gault and Wedekind (1978)
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Mercury: Caloris Basin

Antipodal point

Mariner 10 photographs
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Martian Topography

Tharsis Bulge

Hellas Basin

Borealis Basin



Hellas
Basin

>2,200 km across

> 8 km deep

Elevation
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Borealis Basin

MOLA data

2,000 km



Borealis
Basin

North Polar View

MOLA data

km

•North pole 6 km lower
than south pole

•~7,700 km diameter

Wilhelms and Squyres (1984)

• Remnant rim massifs
identified

• Basin possibly filled
with Noachian seas



Martian Polar Basins

Chryse Basin
(Schultz et al., 1982)
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Callisto—Valhalla 

750 km



Callisto–Valhalla Antipode 



Mimas

Cassini photograph

•  Inner moon of Saturn

•  Herschel crater 
130 km w ide
10 km deep

•  Central peak 6 km high

•  Fractures on opposite side



Miranda

Voyager 2 photograph
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South Pole–Aitken Basin

LPI Modified from Schultz and Craw ford (2008)

Collision modelLaser altimetry

A

B

C

D



Ina–Recent Volatile-Rich Deposits

Schultz et al. (2006)
Schultz and Craw ford (2008)
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Summary

Clementine
photograph

Early Solar System Bombardment 

Solar System Distribution
-Moon
-Mercury and Mars
-Outer Solar System

Significance:
-Crustal Structure and Volatile Distribution
-Earth Hadean 

-Early Bombardment: 4.0 – 4.6 Ga
-Late Heavy Bombardment: 3.8 – 4.0 Ga
-Steadily Declining Impact Flux 
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