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Abstract

Late Cenozoic examples of island arc collision (e.g., Taiwan, Trinidad, Venezuela) have aided in our understanding of exhumation, basin
development, and sediment dispersal in moderately- to highly-oblique convergent margin settings. However, in older mountain belts,
often the timing, location, and duration of collision can only be inferred from stratigraphic and provenance trends from sedimentary basin
that developed during suturing events. In the case of the North American Cordillera, Mesozoic island arc collision is recorded in a
discontinuous belt (>2000-km-long) of clastic strata that are exposed inboard (cratonward) of the allochthonous Wrangellia composite
terrane (composite island arc) from southern Alaska to Washington State. In southern Alaska, synorogenic strata of the Upper Jurassic-
Cretaceous Kahiltna assemblage are located in the suture zone between the Wrangellia composite terrane and pericratonic Intermontane
belt. Stratigraphic constraint and provenance trends from the Kahiltna assemblage, including U-Pb detrital zircon geochronology, reveal
distinct temporal and spatial trends in regional exhumation and basin development during Jurassic-Cretaceous arc collision. U-Pb detrital
zircon geochronology from base-to-top of the Kahiltna assemblage reveal an age distribution of primarily Mesozoic-age grains (Mz-
74%) with less abundant Paleozoic (Pz-11%), and Precambrian (Pc-15%) age grains. A comparison of detrital zircon ages from older to
younger stratigraphic intervals within the Kahiltna assemblage reveals three distinct stages of exhumation and basin development that are
interpreted to represent: (1) An initial Late Jurassic-Early Cretaceous stage during which detritus was derived almost solely from Middle-
Late Jurassic igneous sources of the Wrangellia composite terrane (Mz-100%-Pz-0%-Pc-0%) and deposited in a retroarc foreland basin,
(2) An Early Cretaceous stage that reflects a transition to sedimentation in a remnant ocean basin setting and the first introduction of
Paleozoic and Precambrian age detritus from pericratonic source areas (Mz-84%-Pz-11%-Pc-5%; Mz-59%-Pz-12%-Pc-29%), and finally,
(3) An Early to Late Cretaceous stage that reflects a transition to a collisional foreland basin that was characterized by continued detrital
contributions from inboard and outboard source areas and a relative decrease in Mesozoic arc source areas and increase in Precambrian
and Paleozoic pericratonic sources (Mz-46%-Pz-16%-Pc-38%).
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Talk Overview

1) Introduction — Tectonic configuration of the North American Cordillera

-Current models for Mesozoic island arc accretion

2) Modern Example — Oblique arc collision in the Pacific (Luzon arc,
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Collisional model for Mesozoic accretion of the Wrangellia Island Arc
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* Late Jurassic-Early Cretaceous island-arc accretion

* Late Cretaceous suturing of arc to margin and subsequent strike-slip faulting (~95 Ma)

* Syntectonic strata preserved in a linear trend along N. American margin
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Modern Examples of Island Arc Generation/Accretion
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Example: Oblique Island Arc Accretion Luzon arc (Taiwan)
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Spatial and temporal stratigraphic trends
during oblique convergence
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Diagnostic characteristics:

- Highest topography in North
America

- Jr-K Kahiltna assemblage is
part of a discontinuous belt
(>2000 km long) exposed along
the western margin of North
America




Alaska Range Suture Zone — Generalized Geology




Alaska Range Suture Zone — Stratigraphic and Provenance Overview
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Alaska Range Suture Zone — Kahiltna Assemblage




Alaska Range Suture Zone — Kahiltna Assemblage



Alaska Range Suture Zone - Kahiltna assemblage
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Provenance: U-Pb Detrital Age Dating Sink - Sample - Age
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Bulk U-Pb Age Distribution — Kahiltna Assemblage
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AGE (Ma) Wrangellia composite terrane Intermontane Belt
(Composite island arc) (Mesozoic continental margin)
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Bulk U-Pb Age Distribution — Kahiltna Assemblage
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Upsection Trends in Age Populations — A proxy for exhumation
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Conclusions: Stage 1 - Exhumation of Wrangellia Island Arc

STAGE 1: Late Jurassic
(Oxfordian—Tithonian )
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Conclusions: Stage 2 — Exhumation of Arc (primary) and Inboard Margin

STAGE 2: Early Cretaceous
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Conclusions: Stage 3 — Exhumation of Inboard Margin (primary) and arc

STAGE 3: Early Cretaceous
(Albian)
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