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Abstract 
 
Deep-water toe thrust anticlines have been interpreted using traditional models derived from observations in orogenic thrust belts and 
accretionary prisms, such as fault-propagation folds, detachment folds, and both simple- and pure-shear fault bend folds. However, high 
quality 3D seismic data show that the deep-water anticlines typically display extreme variations in along-strike fold morphology which are 
not accounted for by any individual one of the above models; multiple conflicting kinematic models would have to be applied to explain 
different parts of a single structure.  
 
We present a kinematic model of a singular detachment fold within the Niger Delta outer fold and thrust belt. The fold asymmetry and fault 
vergence change 180 degrees at several locations along the fold, even though the shortening increases monotonically from two minima at the 
fold terminations, to a single maximum at the fold crest, and no lateral transfer structures are present. Evolution of this fold has been studied 
using a combination of depth-converted seismic data, well data, and structural modeling, including structural restorations, isopach mapping, 
and area balancing. The results show that the fold originated as a buckle fold and was subsequently cut by several basinward and landward 
dipping thrusts that penetrated the fold at different depth levels. The kinematic analysis shows that fold grew by limb steepening through 
progressive limb rotation and magnification of a single crest, around a fixed fold axis. Shortening rates vary from 20 m/Ma (0.2 mm/year) at 
the low amplitude ends of the fold, to 200 m/Ma (2 mm/year) at the crest.  
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• Exploration success in the offshore foldbelts depends on 
understanding their architecture

• Deep water gravity-driven foldbelt structures are   
fundamentally different from onshore orogenic foldbelts

• Architecture of seismic wipe-out zones is critical to  
determining the trap elements 

• Multiple serial reconstructions significantly reduce structural
uncertainties in wipe-out zones 

Objectives:



Upper levels are amplitude 
supported

What’s the deeper, un-
imaged non-amplitude-
supported potential?

Typical Toethrust Discovery



Onshore classical thrust-fold models and interpretation rules
- don’t apply in the offshore structures
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Niger Delta regional map 
showing deep water prospects

(Corredor et al, AAPG, 2005)

Regional seismic profile across 
the Niger Delta shows: 

• extensional province on the shelf

• contraction in the toethrust  
systems in the deep-water



Alpha structure contour map 
showing well locations and 
the reversals in fold vergence

Changes in geometry require 
different, contradictory, 
classical 2D models at 
different locations!
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(Kostenko et al, AAPG, 2008)



SW NECross Section 1

Section 1- SW-verging low-amplitude faulted detachment 
fold
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Cross Section 2SW NE

Section 2 - Symmetrical faulted pop-up structure without 
preferred vergence
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Cross Section 3SW NE

Section 3 – NE-vergent faulted detachment fold
(with backthrust)
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Cross Section 4SW NE

Section 4 – NE-vergent faulted detachment fold  
(without backthrust)

Sea Floor
300
500

600
700
720

800
840
850

900
950

Horizon Legend:  Sea Floor
300
500

600
700
720

800
840
850

900
950

Horizon Legend:  Sea Floor
300
500

600
700
720

800
840
850

900
950

Horizon Legend:  Horizon Legend:  



Cross Section 5SW NE

Section 5 - Symmetrical box fold with slight vergence to 
NE
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Cross Section 6SW NE

Section 6 – SW-vergent faulted detachment fold
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Cross Section 7SW NE

Section 7- SW-vergent faulted detachment fold 
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Cross Section 8SW NE

Section 8 – SW-vergent faulted detachment fold
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Max Displacement

Max Displacement

SE

NW

3D view of the Alpha structure showing change in fold 
vergence and thrust fault architecture along the strike

Maximum amplitude of fold is 
associated with minimum fault 
displacement.

No lateral transfer (strike-slip) 
structures 

Several faults – one fold!
Crest
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Along strike Alpha fold amplitude at different depth levels
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500 m

Alpha-1 Results
Wipe-out zone interpreted as fault

5000 m

Alpha-1

Alpha-2

(Kostenko et al, AAPG, 2008)



Alpha-1 Results
Synthesis of tops and dipmeter data shows wipe-out zone is 
vertical fold limb



Alpha-1 Results
Synthesis of tops and dipmeter data shows wipe-out zone is 
vertical fold limb



Completion of section requires faults in core to balance
Integration of MDT / OWC data shows OWC’s higher than fault cutoffs
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Cannot distinguish faults from vertical beds (No ST)
Cannot distinguish relative magnitudes of dip and fault dependent 
closure
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500 m 500 m

Structural Scenario 2
Dip closure + fault closure

Structural Scenario 1 
Dip closure only

Cannot distinguish faults from vertical beds (No ST)
Cannot distinguish relative magnitudes of dip and fault dependent closure
Alternative possible structural interpretations



5000 m

Reduce uncertainties by pseudo-3D restorations

Present day structure

800 - Unfolded using trishear, flexural slip unfold and decompaction 

600 - Unfolded using flexural slip unfold and decompaction 

700 - Unfolded using trishear, flexural slip unfold and decompaction 

Section 3 Section 6

1) Balance & restore 
serial sections.

2) Ensure total 
shortening varies 
consistently 
between sections.

3) Ensure shortening 
rates vary 
consistently 
between sections
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Reduce uncertainties by pseudo-3D restorations

1) Balance & restore serial 
sections.

2) Ensure total shortening 
varies consistently 
between sections.

3) Ensure shortening rates 
vary consistently 
between sections 1
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Reduce uncertainties by pseudo-3D restorations

1) Balance & restore serial 
sections.

2) Ensure total shortening 
varies consistently 
between sections.

3) Ensure shortening rates 
vary consistently 
between sections

L1 @ T1

L2 @ T2

Shortening Rate= ΔL / Δ T
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Result: Most likely model of Section 4 
Balanced section based on consistent shortening magnitudes and rates across all 
sections, minimal thickness changes across faults

• 2 thrust faults in the 
forelimb

• 4-way closure
• fault dependent closure 
at 900 sand level

• alternative 
interpretations result in 
inconsistencies between 
sections
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Example Alternative Model of Section 4 
Balanced but not tied to the rest of the structure

• 1 thrust fault in the forelimb
• 4-way closure at 900 sand level 
• Unrealistic representation of 720 
growth strata level (in blue oval)
• Impossible shortening rate profile
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Conclusions and implications:

• Exploration success in the offshore foldbelts depends on 
understanding their architecture.
• Serial palinspastic restorations greatly reduce the uncertainty in  
fault presence, location & displacement.
• Faults' potential locations and displacements are limited by 
requiring internal consistency of total shortening and shortening 
rates, from line to line.
• Thrust fault dependent columns represent upside potential in 
non-amplitude supported toethrust play. 




