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Abstract 

 
Deepwater channel outcrops in the Eocene Ainsa Basin have been previously well documented. The work presented here, however, focuses on 
evidence of turbidity current bypass and backfilling. Channel bases are characterized by a composite erosional surface with significant incision and 
scouring, and facies comprising scoured thin beds, fine-grained drapes, relatively coarse-grained bars and mud-rich debrites. Above this, channel fills 
are generally finer-grained thick-bedded sand facies. In the channel axes thick-bedded facies are commonly amalgamated, with dewatering and flame 
structures. Towards the margin these facies change laterally to thinner inter-bedded graded sandstones.  
 
These observations imply that numerous relatively high velocity turbidity currents were responsible for cutting the channels, with the majority of the 
sediment load bypassing down slope. Increases in flow velocity can either be related to changes in the staging area of the flows, or an increase in the 
channel floor gradient as channels attempt to establish equilibrium gradients on an irregular or dynamic slope. Seismic data from analogous 
subsurface systems suggests that the latter is a very common process in controlling channel architecture. In many channels, after the initial bypass 
phase, flows with a lower velocity backfill the channel resulting in rapid sand deposition. Debris flow deposits within channels are considered to be 
random events, but their common association with bypass facies may be related to the longevity of the bypass phase relative to the backfilling phase.  
 
Processes of bypass and backfilling operate at different scales, magnitudes and frequencies, resulting in a hierarchy of channelized stratigraphy with 
predictable facies associations. Generic models deriving from this work can be used to aid interpretation and modeling of analogous reservoirs. 
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Marzo et al. (1998)



Channels & Canyons of the Ainsa Basin
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Clark (1994) & after Mutti et al. (1989)



Shelf to Slope Cross Section
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Ainsa II Stratigraphic Channel Hierarchy
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“Muddy Channel” Interpretation

 Erosional channel with 
muddier fill (Clark 
1994)
 But how to maintain 

steep sandy cut-bank?

 Slide/slump
 Channel sands slumped 

downdip – replaced by downdip replaced by 
muddier levee/overbank 
facies

 Debris flow channel

30m
 Ainsa cores

 Falivene et al. 2006
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Erosional Scours
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Sandy Muddy Debrite
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Muddy Sandy Debrite



© Chevron 2005 12

Poorly sorted Pebbly Sandstone (R3):
Imbricated pebbles => Bedload transportation
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Large-scale (>2m) composite barforms
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Scoured Thin-bedded Facies
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Scoured Thin-bedded Facies
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Abandonment / levee
(outcropping on dip slope)
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sections

Med-coarse-grained sst.

V. coarse sst. with pebbles

Thin-bedded med-coarse ssts. with scours
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Thin-bedded ssts. & mudsts.

Pebbly sandy mudst. / muddy ssts. (known)

Pebbly sandy mudst. / muddy ssts. (inferred)
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Cross-Bedded Coarse Sands
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Thinning- & Fining-up Package
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Slumped Thin-Beds



Paleo-Sea-floor Interpretation
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~500m
Initiation of channel complex
“Bypass Phase”
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Ainsa I & II Channel Systems
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Comparison with Seismic Data

100ms
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Conclusions: Bypass Facies & Processes

 “Muddy Channel” interpreted to be complex-scale 
bypass facies association:

 Composite erosional surface

 Scoured thin-bedded facies

 Debrites

 Coarse-grained channels with bars

 Aggradational levee with dunes (at base), fining-up 
sequence & localized slumps

 Debrites can be associated with bypass facies but 
not the process:

Sl i h fl  i filli  h l
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 Sluggish flows infilling channels



Conclusions: Stratigraphic Controls
 Large scale erosional surfaces initiate channel complexes

 But what controls bypass?

1 External cyclic forcing (allogenic)1. External cyclic forcing (allogenic)

2. Autocyclic response of deepwater systems to bathymetry

 Supporting evidence:

 Structurally active basin with syndepositional structuresSt uctu a y act e bas t sy depos t o a st uctu es

 fill & spill processes should be expected

 Channel complexes appear to have gradual abandonments

 autocyclic waxing-waning flow cycles
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