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Summary 
We have developed a complex-beam method for shot-domain prestack depth migration. The method is 
flexible with input geometry and accurate in imaging multipathing arrivals. It is especially useful for 
depth imaging of geologically complex land areas, where data-acquisition geometries are often irregular 
and sparse, and topographic variations are large. We show that the new method is a true-amplitude 
extension of the phase-shift wave-equation migration method into media with lateral velocity variations. 
It can be implemented both non-recursively and recursively.  While the non-recursive implementation is 
efficient, the recursive implementation improves subsurface illumination, making the beam method 
comparable to reverse-time migration.  

Introduction 
Great progress has been made over the past few years in seismic imaging of marine data. Advanced 
methods such as reverse-time migration (RTM) have become standard tools for marine prestack depth 
migration. Yet, for land data, the imaging method of choice is still Kirchhoff migration (KM), generally 
the least accurate depth migration method because of its weakness in imaging multipathing arrivals. 
This is largely due to the fact that RTM is less flexible than KM in dealing with irregular, sparse data-
acquisition geometries and large topographic variations – two problems often encountered in land 
surveys. Aiming at providing an advanced method for land imaging, we have developed a complex-
beam method for shot-domain prestack depth migration. Based on a complex-beam solution to the 
wave equation, this method retains the flexibility of KM, but can also image multipathing arrivals. In this 
paper, we describe this method and show that the method is a true-amplitude extension of the phase-
shift wave-equation migration (WEM) method. The method can be implemented both non-recursively 
and recursively.  We also present migration results from a non-recursive implementation and 
demonstrate that the new method produces depth images superior to those from KM. It overcomes the 
dip limitation of WEM and compares well to RTM in imaging steep and overturned structures. 

Complex-beam summation solution 
A complex-beam summation solution to the wave equation, which forms the basis of complex-beam 
migration, has been derived by Zhu (2009). Here we summarize those results and establish notations 
used in this study. Consider the wave equation in the spatial domain x = (x, y, z) 

,0)(222   uvu x                              (1) 

where ),( xuu   is the wavefield and v(x) the velocity of the medium. The geometric-ray solution to 

this x-domain wave equation takes the form  
,)(),( )(xxx TieAu              (2) 

where A(x) and T(x) are the amplitude and traveltime along the ray. The former is in turn given by  
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where x0 is the source point and )(xJ  the Jacobian of the transformation from the Cartesian to ray 

coordinates. Denote the slowness vector by p = (px, py, pz) and the initial values of px and py at x0  by p0x 
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and p0y. The Maslov integral solution to wave equation 1 can then be written as (Chapman and 
Drummond, 1982): 
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where ),( yU  is the Maslov solution to the wave equation in mixed domain y = (px, py, z) and given by 
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Its amplitude )(yB is calculated from the Jacobian along the geometric ray by   
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where θ is the take-off angle of the ray and ),( 0 yyG  denotes the geometric spreading in the y domain. 

The phase function )(y is given by the Legendre transform of the geometric-ray traveltime T(x): 
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Substituting equation 6 into equation 5 yields 
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where ),0,( yx ppU  is given by the slant stack of the recorded wavefield :),0,,( yxu
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Integral 4 represents a summation of geometric-ray solutions. It can be transformed into a summation 
of complex beams by replacing the geometric-ray solutions with complex-ray solutions (Zhu 2009). This 
gives  

,),(),( 000 yxCB dpdpuUu   xx           (10) 

where CBu  is a complex-beam solution constructed along a given geometric ray, often referred to as the 

central ray, in a ray-centered coordinate system. Details of this solution can be found in Zhu (2009).  
 

It can be shown that in a homogeneous medium, ,1),( 0 yyG  and, with xx kp   and ,yy kp   the y-
domain Maslov solution 5 reduces to the phase-shift solution 
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which is the basis of the phase-shift WEM method. Since solution 5 includes geometric spreading 

),( 0 yyG , summation 4, and hence 10, represents a true-amplitude extension of the phase-shift method 

into laterally inhomogeneous media. Similar to the phase-shift method, equation 10 can also be 
implemented recursively. 

Non-recursive and recursive shot-domain complex-beam migration  
Complex-beam migration based on extrapolation equation 10 is flexible in implementation: It can be 
implemented in the shot domain both non-recursively and recursively.  Both implementations require 
local plane-wave decomposition of shot records, but differ in how the local planes are back extrapolated 
into the subsurface and imaged.  
 
The local plane-wave decomposition of a shot record is accomplished by partitioning the record into 
small patches using overlapping Gaussian windows, each window centered on a regularly spaced grid 
point, referred to as a beam center. Slant stack 9 is then used to decompose each of these windowed 
data patches into local plane waves with a range of initial propagation directions. The number of initial 
directions is determined by wavefield sampling theory and the spacing between the beam centers by 
the partition of unity of the overlapping Gaussian windows (Hill, 2001). 
 
For non-recursive implementation, each local plane wave from a beam center is back propagated by a 
single complex beam traced from the center with the plane-wave’s initial direction across the entire 
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migration aperture. Similar to the wavefield at the receivers, the point-source wavefield at the shot 
location is also decomposed into local plane waves and propagated by complex beams with different 
initial propagation directions. A subsurface image is generated from the overlapping volume between a 
pair of source and receiver beams. Accumulating the contributions from all shot-receiver beam pairs for 
a given beam centre produces a beam-center image, and summing over all beam centers from a shot 
record gives a common-shot image. The final subsurface image is formed by stacking together all 
individual common-shot images.  
 
The non-recursive implementation is efficient but may suffer from poor subsurface illumination beneath 
a highly complex overburden, resulting in images inferior to those from RTM and WEM. It is common to 
attribute this inferiority to the high-frequency approximation of ray and beam methods. This is in fact a 
misconception as it can be shown that the P and S-wave decoupled acoustic wave equation used in 
RTM and WEM is of the same-order approximation as the ray and beam methods to the elastic wave 
equation in general inhomogeneous earth media (e.g., Ben-Menahem and Beydoun, 1985; Zhu, 1988). 
Both approximations assume local homogeneity of a medium, i.e., the variations of elastic parameters 
and velocities of the medium over a wavelength are much smaller compared to the parameters and 
velocities themselves. Moreover, as shown in the previous section, solution 5 is a true-amplitude 
extension of the phase-shift solution and the beam method is therefore at least as accurate as the 
phase-shift WEM method. Thus the inferiority is not due to the accuracy of the beam approximation. It 
is due to the implementation: RTM and WEM are implemented recursively and there are many 
propagation paths from each surface location illuminating a depth point (Gray and May, 1994), resulting 
a uniform spatial sampling of the subsurface by the wavefield.  For the non-recursive implementation of 
the beam method, on the other hand, severe shadow zones can develop over long propagation paths in 
a complex medium so that there will be no propagation paths from a surface location to the depth 
points  in some regions, resulting in poor illumination in these regions. This problem can be resolved by 
implementing the beam method recursively in a manner similar to that of the phase-shift WEM method. 
Such implementation regularizes the wavefield at each recursive depth, making the beam illumination 
comparable to those of RTM and WEM. 

Example 
We have completed the non-recursive implementation of the complex-beam method.  The migration 
results from this implementation are compared here with those generated by Kirchhoff, WEM and RTM 
using a synthetic dataset from the 2D Canadian Foothills model shown in Figure 1a. The model is 
about 25km long and 10km deep and is characterized by large lateral variations in both velocity and 
topography. The velocity ranges from 3600 to 6000 m/s and the maximum elevation difference reaches 
1340m. It also contains steep and overturned folds as highlighted by the ellipses in the figure. Based on 
finite-difference solution of wave equation 1, RTM is the most accurate migration method and its image 
in Figure 1b is used here as a benchmark for the comparison.  For the most part of the model, all four 
methods give similar results. They all image, for example, the dipping basal reflector at the bottom of 
the model and the faulted fold about the reflector accurately. The Kirchhoff result (Figure 1c), however, 
shows more migration swing artifacts, in part because of its wide-spread migration operators.  It also 
failed to image the steep and overturned structures. The WEM image (Figure 1d) appears to be cleaner 
than the other three, but WEM was also unable to image the steep structures due to its one-way 
approximation. Complex-beam migration (Figure 1e), on the other hand, compares well to the RTM 
method and imaged both the steep and overturned structures correctly.  

Conclusions 
Aiming at providing an advanced method for land imaging, we have developed a complex-beam 
method for shot-domain prestack depth migration. Based on a complex-beam summation solution, this 
method is flexible with input geometry and accurate in imaging multipathing arrivals. The beam method 
has the same order of accuracy as RTM in approximating the elastic wave equation in earth media and 
can be implemented both non-recursively and recursively. Test results from our non-recursive 
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implementation demonstrate that the complex-beam images are superior to those produced by the 
Kirchhoff method. Moreover, the new method does not suffer the dip limitations of WEM and compares 
well to RTM in imaging steep to overturned structures. Quality of beam images, especially those 
beneath highly complex overburdens, can be further improved by a recursive implementation, which 
regularizes the subsurface illumination of the beams, making the method comparable to RTM. 
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Figure 1. Depth migrated images from the Foothills model dataset. (a) Velocity model using for generating the 
synthetic data. (b) Reverse-time migration. (c) Kirchhoff migration. (d) Wave-equation migration. (e) Complex-
beam migration. 
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