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Summary 
We present a novel multidimensional seismic 
trace interpolator that works on constant 
frequency slices. It performs completion on 
Hankel tensors whose order is twice the 
number of spatial dimensions. Completion 
(estimating the unknown values within the 
tensor) is done by reducing the rank using an 
Alternating Least Squares algorithm. The new 
interpolator can better handle large gaps and 
high sparsity than existing completion methods. 

Introduction 
Interpolating in four spatial dimensions 
simultaneously, known as 5D interpolation, has 
become widespread as it can overcome 
acquisition constraints for 3D seismic surveys 
(Trad, 2009).  Prestack traces, however, are 
often both noisy and sparse when placed on a 
regular four-dimensional grid, and so we require 
interpolators that perform well under these 
conditions. 

A tensor is a multi-way array (Kolda and Bader, 
2009). For example, a vector is a first-order 
tensor, a matrix is a second-order tensor, and a 
cube of values is a third-order tensor.  

An outer product (designated “∘”) is the 
multiplication of n vectors to form a tensor of 
order n. For example, the outer product of two 

vectors a and b forms a matrix M: 

M  =  a ∘ b  =  a b
T
  where  M(i,j) = a(i) b(j). 

The outer product of three vectors a, b, and c 
forms a third-order tensor T (Figure 1): 

T  =  a ∘ b ∘ c   where  T(i,j,k) = a(i) b(j) c(k). 

 

 
Figure 1: The outer product of three vectors    

forms a third-order tensor. 

There are many ways to define tensor rank. 
Here we say a tensor has rank k if it can be 
written as the sum of k (but no fewer) outer 
products.  

Recently seismic trace interpolators have been 
developed based on tensor completion. 
Beginning with a multidimensional grid of traces 
with some traces missing, the general method 
is as follows:  

 

 

 

 

 

 

 

Two methods for forming the tensor in step 1 
have been proposed. The first forms block 
Hankel matrices (Trickett, Burroughs, Milton, 
Walton, and Dack, 2010; Oropeza and Sacchi, 
2011). We will call this Hankel matrix 
completion. The second method takes the grid 
of complex values as a tensor without 
rearranging the values (Kreimer and Sacchi, 
2012), so that the number of spatial dimensions 

Take the DFT of every trace in the grid. 

For every frequency... 

     1.   Form a complex-valued tensor T  
           from the frequency slice. 

2.   Perform tensor completion on T. 

3.   Recover the interpolated frequency  
      slice from the completed tensor. 

Take the inverse DFT of each trace. 
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equals the tensor order. We will call this direct 
tensor completion. Some of the tensor elements 
will be unknown (and thus in need of 
interpolating) due to the missing traces.  

Tensor completion in step 2 finds a low-rank 
tensor R which fits as closely as possible the 
known elements of T. That is, R minimizes 

        )                                ) 

where        is the Frobenius norm and Z( ) is 

an operator that zeroes out all elements that 
are unknown in T. Tensor R provides an 
approximation to the unknown tensor elements, 
and thus to the missing traces.  

Step 3 is typically done by averaging over every 
tensor element in which each frequency slice 
value was originally placed.  

The impetus for the above method is an 
Exactness Theorem, which holds for every 
method of forming T described here: 

Suppose a multidimensional trace grid has 
no more than k dips. Then for every 
frequency there exists a rank-k tensor which 
fits the known elements of tensor T exactly. 

Method 
Here we combine ideas from the direct tensor 
and Hankel matrix completion to produce what 
we will call Hankel tensor completion. There are 
two questions to answer: How do we form 
tensor T in step 1 and how do we derive a low-
rank approximation R in step 2? 

To form the tensor, suppose we are given a raw 
frequency slice S having two spatial dimensions 

with lengths s1 and s2. Form a fourth–order 

Hankel tensor T by generating two tensor 
orders for every spatial dimension: 

T (i,j,m,n)  =  S (i+j-1, m+n-1) 

where the lengths of the four tensor directions 
are (in order) s1/2+1,  (s1+1)/2,  s2/2+1, and (s2+1)/2. 

Figure 2 depicts the conversion of a 5x5 
frequency slice into 5x5 direct tensor, a 9x9 
block-Hankel matrix, and a 3x3x3x3 fourth-
order Hankel tensor.  

 

Figure 2: Three strategies for converting a frequency 
slice for two spatial dimensions into a tensor. 

In four spatial dimensions we build an eighth-
order tensor: 

T (i,j,m,n.p,q,r,s) = S (i+j-1, m+n-1, p+q-1, r+s-1). 

There are many other ways to create a tensor 
from a frequency slice. The above scheme has 
the same elements as the Hankel matrix 
method, but arranged in a different pattern. 

Given tensor T, we must find a low-rank 
approximation R. There are many strategies for 
this, including Tucker decomposition or HOSVD 
(Kreimer and Sacchi, 2011) and nuclear norm 
minimization (Kreimer and Sacchi, 2012). Here 
we use PARAFAC decomposition (Kolda and 

Bader, 2009). For tensor order p and rank k, we 
model: 

     ∑     
 ∘   

  ∘   ∘   
   

 

   

 

 
There is no algorithm to determine vectors 
  

                    to minimize equation 

(1) in every case. Nevertheless, there are many 
that give reasonable solutions, the simplest 
being Alternating Least Squares, or ALS: 
 

 

 

 

Make an initial estimate of   
   

Iterate until equation (1) stops decreasing… 
     Iterate for j = 1,…,p 

          Update   
 , i =1,…,k to minimize  

          equation (1). 
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Each minimization step is a series of linear 
least-squares problems, one for every element 

of   
 . Missing tensor elements, representing 

missing traces in the grid, are handled by 
ignoring these elements (that is, by omitting 
their rows in the linear system) during each 
least-squares solution, so that they have no 
effect on the minimization. 

Why might Hankel tensors make for a better 
interpolator than Hankel matrices? The tensor 
outer-product vectors are much shorter than the 
matrix outer-product vectors. For example, 
suppose we are filtering a multi-dimensional 
frequency slice that is 15 traces on each side. 
Here is the number of parameters needed to 
model a single rank (and thus a single dip) 
using the two methods: 

Spatial 
Dimensions 

Hankel 
Matrix 

Hankel 
Tensor 

Ratio 

1 16 16 1 

2 128 32 4 

3 1024 48 21 

4 8192 64 128 

Table 1: The number of outer-product parameters 
estimated for each rank for Hankel matrix and Hankel 
tensor interpolation as a function of spatial dimensions. 
The ratio of these two numbers is in the final column. 
The data grid is 15 traces in each direction. 

Thus Hankel tensor completion estimates fewer 
parameters, resulting in greater accuracy and 
robustness in the presence of noise or extreme 
sparsity, especially in higher dimensions. 

A second advantage is that the method runs 
much faster than Hankel matrix completion, 
even with the speed-ups of Gao, Sacchi, and 
Chen (2013). The recursive nature of the model 
allows computations for each spatial dimension 
to separate, and we need not explicitly form 
Hankel tensors at any stage. 

Examples 
We first compare Hankel matrix to Hankel 
tensor interpolation on synthetic data in two 
spatial dimensions. Direct tensor interpolation is 
not compared, since it does a poor job in two 
spatial dimensions due its lack of constraints. 
Figure 3 shows that Hankel tensor is better able 
to handle large gaps. Figure 4 shows a 

synthetic in four spatial dimensions, 
demonstrating Hankel tensor interpolation’s 
superior ability to handle extreme sparsity.  

 
Figure 3: Comparing interpolators on a synthetic 21 by 
21 trace grid with a gap in the center. Only a slice near 
the middle of the grid is shown. Hankel matrix 
interpolation does poorly when the gap is 15 by 15 
traces or larger, while Hankel tensor interpolation does 
well even for a 17 by 17 trace gap. 

A real example is given in Figure 5, showing a 
single 3D CMP gather before and after 5D 
interpolation. 

Conclusions 
Hankel tensor completion is a novel means of 
interpolation that demonstrates a greater ability 
to handle large gaps or high sparsity than 
existing completion methods. 

Much remains to be done on tensor 
interpolation methods. It’s not clear what the 
best decomposition for rank reduction is, nor 
what the best algorithm is to calculate it, given 
that ALS can sometimes be slow to converge. 
Nor have we exploited the pair-wise symmetry 
of the tensors when the data grid lengths are 
odd. 
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Figure 4: A synthetic in four spatial dimensions (a one-dimensional slice is shown) with an event curving in 
two dimensions and another planar event dipping in two dimensions. The raw undecimated synthetic is on 
the left. Most of the traces were removed at random, and then both Hankel matrix and Hankel tensor 
interpolators were applied to recreate the synthetic. Hankel tensor interpolation withstands greater sparsity, 
and in particular does a better job of preserving curvature. 

 

 
Figure 5: A real 3D CMP gather plotted by azimuth sector and offset (left) and the same gather after 5D 

interpolation using Hankel tensor completion (right). 
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