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Abstract

Acquisition design plays a very significant role in seismic data processing and imaging. An
optimized seismic acquisition design requires less resources and therefore, it can reduce the total
cost of seismic exploration. Non-linear optimization methods can be used to deduce the posi-
tion of sources and receivers that can lead to an optimal grid. By optimal grid, we understand a
feasible distribution of sources and receivers that is amenable of reconstruction via known wave-
field restoration methods. For this purpose, we propose to maximize the entropy of the sampling
function of the grid subject to acquisition constraints. Maximum entropy grids produce sampling
functions that can be easily reconstructed by existing interpolators. The design of source-receiver
patterns that lead to maximum entropy mid-point offset grids is a non-linear optimization problem
that we would like to explore.

Introduction

Different key input parameters such as field geometry, fold, and bin size have significant influence
on seismic acquisition design (Cordsen et al., 2000). In conventional land data acquisition design,
the field geometry is generally assumed dense and orthogonal not only to avoid spatio-temporal
aliasing artifacts but also to obtain high-fidelity and high-resolution seismic data. Classical acquisition
techniques often require resources that drastically increase the total cost of the survey. Hence, we
would like to design the sparsest acquisition where reconstruction algorithms can optimally operate
(Liu and Sacchi, 2004; Xu et al., 2005; Abma and Kabir, 2006; Trad, 2009; Trickett et al., 2010). In
recent year important advances in seismic signal reconstruction have been made. However, little
understanding exits in ways of linking acquisition design to the ability of existing interpolators to
reconstruct seismic data. We discuss a methodology to perturb field operations in a way sampling
enables high quality reconstructions.

Entropy: A measure of grid dissorder

We first introduce the entropy of a vector via the following expression (Sacchi et al., 1994)

H =− 1
N log(N)

N

∑
k=1

qk log(qk) (1)

with

qk =
x2

k

∑n x2
n/N

(2)

minimum entropy is achievable for sparse vectors and maximum entropy is achieved by random
vectors x. The definition was normalized in such a way −1≤ H ≤ 0. We use this definition of entropy
also for multidimensional structures by summing over all samples of the multidimensional signal x.
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Sampling function

One can characterize a regular grid by its sampling function. For instance, we can consider a 2D
lattice of regular grid points occupy by observations dobs(n,m) and represent it in terms of the ideal
fully sampled data d(n,m) as follows

dobs(n,m) = s(n,m)×d(n,m) (3)

where s(n,m) = 1 when there is an observation and s(n,m) = 0 when the grid point is empty. It is
possible to show that the Discrete Fourier Transform (DFT) of the observed data is related to the DFT
of the data in the ideal grid via

Dobs(kx,ky) = S(kx,ky)⊗D(kx,ky) , (4)

where ⊗ is the symbol for discrete convolution and S(kx,ky) is the sampling function. Naghizadeh
and Sacchi (2010) has demonstrated that the recovery of d(n,m) from dobs(n,n) depends on S(kx,ky).
Clearly this can be generalized to data that depends on four dimensions and time or frequency.

In Figure 1 we portrayed 2 sampling operators and their associated sampling functions. In seismic
data interpolation one would like to avoid regular decimation because it leads to spectral replicas that
conduce to alias. In general, spectral replicas like those in Figure 1c an d are not problematic if the
signal that one would like to record is band-limited. The sampling operator and sampling function
in Figures 2a and b shows a case with decimation in x and y that can lead to sampling scenarios
that cannot be easily interpolated or reconstructed via known Fourier reconstruction methods (Liu
and Sacchi, 2004; Xu et al., 2005; Abma and Kabir, 2006; Trad, 2009) . On the other hand, Figures
2c and d show that the same number of observations distributed randomly in the original grid lead
to a sampling function that resembles the sampling function of the fully sampled data but corrupted
by background noise. The sampling function in Figure 2d conduces to situations that can be easily
reconstructed by Fourier methods (Naghizadeh and Sacchi, 2010) and by local directional transforms
(Hennenfent and Herrmann, 2008).

Let assume we have a 2D grid that has been decimated in a regular manner in the x and y coordi-
nates. This corresponds to the sampling operator and sampling function indicated with j = 0 in the
Figure 3. We propose to flip occupied grid points by unoccupied grid points in a random fashion
and repeat the flipping 1000 times. Figure 3 shows the evolution of the sampling operator and of the
sampling function for 10,200,500 and 1000 flips. The same number of grid points are occupied for
all the simulations (16×16 points). The idea of flipping is to allow us to start with a regular (aliased)
configuration with a fix number of observations and slowly evolve into a grid with the same number
of observation but with a sampling function amenable of interpolation. Clearly, after j = 200 flips one
see that the strong replicas associated to regular sampling in x and y have disappeared. Figure 4
shows the entropy H of the sampling function versus number of flips. In other words, we computed
the amplitude of the DFT of the sampling operator s(n,m) and evaluated its entropy, H(|S(kx,ky)|).
We observe that by randomly perturbing the original grid we increase the entropy of the sampling
function. This makes us believe that entropy can be one of the many metrics that one could optimize
for finding optimal grids.

This analysis serves to understand the importance of grid randomization to minimize alias. However,
data are often recorded by field patterns that respond to logistic constraints (sail lines, cables, obsta-
cles, etc). We would like to investigate ways of transforming data recorded in the field into grids that
can guarantee an optimal reconstruction via existing interpolation methods.
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Figure 1: a) A 2D lattice where all points are occupied by observations. b) Sampling function of a).
c) A grid lattice where every second x-line was removed. d) The sampling function of c).
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Figure 2: a) A 2D lattice where every second x and y lines were removed. The grid has 16×16 points
but only 64 = 8× 8 are occupied with information. b) Sampling function of a) where alias is evident.
c) In this case about 64 points are occupying random positions in the original grid. d) The sampling
function of c).
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Figure 3: Grids (left) and Sampling Functions (right). We started with a grid of size 32×32 occupied
by 16×16 observations. j = 0 indicates that three was no flipping of occupied by non-occupied points.
The rest of the images indicate grids and associated sampling functions after j = 10,200,500 and 1000
random flips. Each flip entails making an occupied grid point becoming unoccupied and vice-versa.
This guarantees that the number of observations is kept constant and equal to 16×16 for all cases.
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Figure 4: Evolution of the entropy of the sampling function versus number of flips. Maximum en-
tropy grids lead to wavefield sampling scenarios that can be reconstructed by existing methods (e.g.
MWNI (Liu and Sacchi, 2004), ALFT (Xu et al., 2005), POCS (Abma and Kabir, 2006) and Cadzow
reconstruction (Trickett et al., 2010)).
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Binning

Data are recorded in source-receiver coordinates. The transformation from source-receiver to midpoint-
offset is invertible and we will call this transformation G . When the data are transformed from source-
receiver coordinates to midpoint-offset bins using for instance, bin centering, the transformation is
non-invertible because more than one trace could end up in the same bin. We denote the operation
of binning B.

The geometry in the source-receiver manifold can be represented by Ωx. The lattice Ωx can be reg-
ular or irregular but for simplicity we assume a configuration that is doable by current acquisition
practices. We also assume that Ωx has a given number of sources and receivers occupying geo-
graphical positions. Moreover, one can also assume that not all sources have produced data that
were acquired by all receivers. The survey in the midpoint-offset grid can be represented by Ωy.
Clearly, Ωx indicates a collection of natural coordinates for sources and receivers and Ωy indicates
the position of the data in a regular midpoint-offset grid where not all grid points have been occupied
by data. The transformation can be represented as follows

Ωy = BG Ωx (5)

We can now compute the sampling function of the grid Ωy which we denote |Sy(k)| where k indicates
the vector of wave-numbers associated to the DFT of the grid Ωy. For instance, k can indicate
midpoint inline, midpoint cross-line, offset and azimuth wave-numbers.

A cost function for acquisition design

Consider now that one has Nx traces in the original acquisition manifold Ωx. The number of traces
that are populated in the grid Ωy is called Ny. In addition we call My the total size of the grid Ωy.
For instance, if the grid Ωy is composed of 20× 20 midpoints and 10 offset and 5 azimuths My =
20×20×10×5. We now define the grid density

ρy =
Ny

My

and the grid efficiency

ηy =
Ny

Nx
.

In an ideal scenario ηy should be close to one. However, ηy = 1 can lead to a low grid density and
therefore, to a questionable reconstruction of Ωy via our interpolators. To increase ρy, we need to use
a coarse midpoint-offset grid that will lead to a decrease in ηy. The latter occurs because multiple
traces will be placed on a given bin. In addition, one would like to force values of ρy to be close to a
target density that permits our interpolator to reconstruct the data. For instance, MWNI (Trad, 2009)
can reconstruct volumes that are populated by ≈ 10% of traces. We call the desired values for these
variables ρ̄y and η̄y. One can pose acquisition design as the problem of finding the geometry Ωx that
maps to a grid Ωy. Putting it all together, we now have a problem where the goal is to maximize the
cost function H subject to constraints. Given a grid Ωy, our unknowns are the distribution of data in
Ωx that properly populates the grid Ωy. Mathematically, this can be expressed as follows

Find Ωx by maximizing H(|Sy|) (6)
subject to ηy− η̄y ≈ 0

and ρy− ρ̄y ≈ 0 .

GeoConvention 2013: Integration 5

AAPG Search and Discovery Article #90187 © CSPG/CSEG/CWLS GeoConvention 2013, Integration: Geoscience Engineering Partnership, 6-12 May 2013, Calgary, AB, Canada



Where we remind the reader that |Sy| indicates the multidimensional Fourier transform of the sampling
operator. The latter is a function of Ωx because Ωy = BG Ωx. This problem lacks of practicality
because it does not consider field acquisition practices. We propose to start with an initial geometry
Ωx that is realizable in the field and find realizable source and receiver perturbations, ∆Ωx, such that
maximize H. The non-linear optimization problem can be summarized as follows

Find ∆Ωx by maximizing H(|Sy|) (7)
subject to ηy− η̄y ≈ 0

ρy− ρ̄y ≈ 0

Ωx +∆Ωx ∈Fx

with Ωy = BG (Ωx +∆Ωx)

where Fx is a feasible set of solutions. In other words, Fx is needed to avoid solutions that are not re-
alizable as one needs to consider obstacles and source-receiver deployment and logistic constraints.
We envisage using Genetic Algorithms or Simulated Annealing to solve the optimization problem.

Conclusions

The final destination of this proposal is to define an optimum acquisition design framework that will
identify the smallest possible number of shots and receivers locations that guarantee proper recovery
of a denser acquisition via existing interpolators. At present time we are also investigating ways of
incorporating subsurface information in the acquisition design problem.
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