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The upper portion of the Midale Beds of southeast Saskatchewan were deposited in a Tidal Flat
environment and show a great deal of variation in reservoir quality. They were vulnerable to erosion
as a result of an extended period of exposure. Our model of deposition suggests that the carbonates
prograded laterally as clinoforms and built up to sea level (Kent and Lake, 2012). The potential for
preservation depends on the duration of exposure and the stability of the platform and sea level. This
explains the thinning of the Midale Beds as we move eastwards from Weyburn - Midale towards
Steelman Pool (Lake. 2001).

The cores on display give us an opportunity to review the evidence.

The top of the Midale Beds represents a Sequence Boundary since the package built up to sea level
and was subject to exposure and erosion, similar to the modern Sabkha Faishakh in Qatar, Persian
Gulf . (Illing and Taylor, 1993). The overlying Midale Evaporite represents the initial flooding event on
the Sequence Boundary and was sourced from restricted circulation of sea waterl (Harris and Kowalik,
1993). (Figure 2).

Early Mississippian Midale Beds (Visean) represents the initiation of Icehouse contitions as evidenced
by glaciations in Gondwana (the present South America, South Africa, Antarctica, India and Australia)
Crowell, 1999, Lopez-Gamundi and Butois, 2012. In addition,, the continents of Laurasia and
Gondwana were on a collision course to creating Pangaea. The timing was right for sea level changes
by both Glacial and Eustatic/Orogenic origins. The collision of the continents created compressive
conditions and stress which are recorded in the Midale Beds of southeast Saskatchewan. Nnortheast-
trending lineaments were interpreted from the Top-Midale to Top— Mississippian Isopach map (figure
1) and show horizontal sinistral offset when superimposed on the QOilfields Map of Nickel and Yang,
(2008). The fault system trends northeast with sinistral wrench faulting observed on the west side of
Steelmgn Pool (displacement of approximately 20km.) . This stress regime deviates from the north-
trending Precambrian basement magnetic iineaments (Nemeth, et al, 2005; Morosov and Li, 2012) but
is consistent with stress regimes in place since the Proterozoic. The lineations of Qilfields follow the
northeast orientation, including Post- Mississippian erosional Alida Formation remnants at Alida-
Rosebank-Nottingham Pools and confirms they existed prior to the Laramide Orogeny . The thinning
of the Midale Beds west of Steelman Pool resulted from differential vertical movement of this block
There is a low potential for preservation of Midale tidal flat dolomite reservoirs in areas of uplift.
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In contrast to the subtle relief over much of Midale Beds Sequence Boundary, the Frobisher Sequence
Boundary underwent severe erosion with significant section missing If we assume similar thickness
of facies in the Frobisher and Midale cycles, there is 15 meters of section not accounted for in the
Frobisher at 11-32-4-4W2M: We attribute this to rapid sea level change from tectonic uplift (figure4).
The tidal flat package of the Frobisher (State A) underwent considerable erosion and is reduced to 1
meter in thickness. The Frotisher Evaporite represents the initial flooding event of the Midale Beds
and represents a forced regression of facies towards the basin. Exposed and oxidized anhydrites
overlie the sequence boundary. Shark Bay, Western Australia (Hamelin basin) is the depositional
model (Harris and Kowalik, 1994) Ffigure 3). Erosion of the Frobisher Beds is much more severe in
terms of the rapidity of the exposure. We go from an open marine platform to an abbreviated tidal flat
with extensive erosion.. This abbreviated Frobisher is attributed to tectonic uplift rather than sea level
fluctuations from glacial activity because of the amount of section missing.. The erosion at the
sequence boundary proves that the overlying Evaporites are in fact the initial flooding events of the
overlying sequences.

Conclusions:

The Tidal Flat and Sabhka Reservoirs of both the Frobisher (State A) and Upper Midale (Marly) are
susceptible to erosion due to their vulnerability to exposure and hence represent sequence boundaries.
The Frobisher and Midale Evaporites do in fact represent the initial flooding events of the Midale and
Midale Evaporite sequences. Deposition of the Frobisher and Midale was influenced by sea level
fluctuations associated with both tectonics (Laurasia-Gondwana collision) as well as the initiation of
glaciation in the Icehouse conditions in Gondwana (Crowell, 1999; Lopez-Gamondi and Butois, 2010).
The idea of preservation potential versus depositional models for tidal flat dolomite reservoirs gives us
a different perspective for exploration . These ideas resulted from modelling depositional environments
in conjunction with looking at the rocks.

The northeast-trending sinistral offsets occurred contemporaneously with sedimentation and are part of
the continental collision history which has been going on since early Proterozoic. The Post-Archean
collision of Superior-Churchill Craton with the Proterozoic Vavapai-Mazatzal-Grenville trend parallels
the Laurentia-Gondwana collision, suggesting the stress pattern we see in the Williston Basin is older
that Mississippian and is susceptible to reactivation.. The Post-Mississippian Absaroka Unconformity
event ( Sloss, 1963) occurred at the Permian docking of Laurasia and Gondwana resulting in the
supercontinent of Pangaea (which coincides with the Permian mass extinctions.
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Figure 1

Lineaments superimposed on Oilfield Map of southeast Saskatchewan (Nickel and Yang, 2008).
Sparse Midale production between Weyburn and Steelman Pools is caused by erosion at the Midale
Sequence Boundary due to contemporaneous uplift.

Figure 2
Upper Midale to Top of Mississippian Isopach Map of southeast Saskatchewan demonstrating
significant lineaments. (2m contour interval- using TGI2 data tops.
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Figure 3

Map of Sabkha Faishakh, Qatar Peninsula is a modern analogue for the Midale carbonate tidal
sequence boundary. The satellite image of Shark Bay, western Australia, emphasizes that flooding of
the sequence boundary is mandatory for evaporate deposition.
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Figure 4
Comparison of Frobisher (left) and Midlale (right) sections from the 13-32-4-4W2M Douglaston well.

The Frobisher (State A) is missing about 15 meters of section in comparison to the Midale as a result
of exposure and erosion on this sequence boundary.
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Figure 5

Core Description of 6-24-4-13W2M Elswick. showing continuous flooding from Frobisher Evaporite by
channel facies of Lower Midale.. Sequence progrades (shallows up) to Tidaal Flat/ Sequence
Boundary.
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Figure 6

Core description for 14-21-5-12W2M Weyburn well showing subtle nature of Upper Midale Sequence
Boundary. Overlying Midale Evaporite represents the initial flooding event of the overlying cycle.
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Figure 7

Core Description for the 13-32-4-4W2M Douglaston well. Section includes the Sequence Boundaries
for both the State A and Upper Midale.





