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Summary

In this paper we present a new algorithm to reconstruct prestack (5D) seismic data. If one considers
seismic data at a given frequency and, for instance, in the x midpoint, y midpoint, offset and azimuth
domain, the data volume can be represented via a 4th order tensor. Seismic data reconstruction can
be posed as a tensor completion problem where it is assumed that the fully sampled data can be
represented by a low rank tensor. The alternating direction method of multipliers (ADMM) is utilized
to estimate the fully sampled low rank tensor that honours the observations. A field example from a
data set from a heavy oil field in Alberta is used to evaluate the proposed tensor completion method.

Introduction

Multidimensional seismic data reconstruction is often tackled via regression methods. The available
data are expressed in terms of known basis functions multiplied by coefficients that weight the contri-
bution of each function in the basis to the representation of the signal. Techniques under this category
often adopt Fourier basis and seek an expansion in terms of a sparse collection of coefficients. Once
these coefficients are found, Fourier synthesis is used to estimate data at unobserved spatial po-
sitions (Liu and Sacchi, 2004). Fourier methods driven by sparsity promoting techniques are also
connected to the well-established family of methods that operate under the assumption of spatial
predictability (Spitz, 1991; Naghizadeh and Sacchi, 2007). This can be easily shown by the equiv-
alence that exists between predictability in space and sparsity in wave-number domains for signals
that admit a representation in terms of a superposition of multidimensional plane waves.

In this paper we discuss a multidimensional reconstruction method that is based on the concept
of tensor completion. The prestack seismic volume can be represented by four spatial coordinates
and frequency. The spatial coordinates in our analysis are x and y midpoints, offset and azimuth
(mx,my,h,az). We assume that the fully sampled seismic tensor is a low rank structure. Missing
data and noise will increase the rank of the tensor and therefore, rank reduction methods for tensors
are adopted to estimate the ideal fully sampled seismic volume. The proposed method resembles
reconstruction techniques that operate under the framework of Cadzow or Multichannel Singular
Spectrum Analysis (MSSA) reconstruction (Trickett, 2008; Trickett and Burroughs, 2009; Trickett et al.,
2010; Oropeza and Sacchi, 2011). However, Cadzow/MSSA reconstruction techniques operate on
Hankel matrices that are formed with prestack seismic data. Tensor completion methods, on the
other hand, directly operate on the multidimensional volume.

Kreimer and Sacchi (2012) proposed to use the Higher Order Singular Value Decomposition (HOSVD)
to recover missing data via the aforementioned concept. In this presentation we examine a new al-
gorithm that permits to write the tensor completion problem in the framework of convex optimization
(Gandy et al., 2011). One advantage of the proposed technique is that the rank of the tensor is re-
vealed by the optimization process. The latter is the main difference to our original tensor completion
algorithm via HOSVD where the desired rank was provided as an input variable.
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Theory

We start our analysis by considering prestack seismic data in the receiver, source and frequency
space. For a given monochromatic frequency ω, x and y midpoints, offset and azimuth (mx,my,h,az),
the seismic data after binning can be represented by a fourth order tensor. We will denote tensors
with bold calligraphic fonts D, matrices with bold capital fonts D and scalars with italic letters a. The
unfoldings of a fourth-order tensor D will be written as D(i), i = 1,2,3,4. Four unfoldings exist for a
fourth-order tensor and they consist of a re-ordering of its elements into a matrix. The operations of
unfolding and folding require careful manipulation of the indices of the tensor and consist of mapping
a tensor to a matrix and vice versa. Furthermore, the nuclear norm of a matrix A is ‖A‖∗ = ∑

n
i=1 σi,

being σi the singular values of the matrix. The nuclear norm of a tensor will be defined as the sum of
the nuclear norms of its unfoldings

‖D‖∗ =
4

∑
i=1
‖D(i)‖∗ (1)

The cost function for the interpolation and denoising problem is

minimize J =
4

∑
i=1
‖D(i)‖∗ +

λ

2
‖T D−Dobs‖2

F , (2)

where Dobs are the observations, T is the sampling operator with the same size as D and λ is
a trade-off parameter. The cost function J is minimized using the alternating direction method of
multipliers (ADMM) (Bertsekas and Tsitsiklis, 1989).

Examples

Our field data example is from an orthogonal survey acquired over a heavy oil field in Alberta, Canada.
We reconstructed a crossline swath from this survey by dividing into 21 overlapping blocks of in-
line/crossline (12 inlines overlap length). For each block, the dimensions of the grid were of size
26× 26× 5× 8, in the inline-crossline-offset-azimuth domain. The azimuth was measured counter-
clockwise from the East. Furthermore, we used overlapping time windows of 200 samples for the
interpolation of each block, where the total number of samples were 1000 (5 windows in total). The
bin size in the inline and crossline directions was 5m×5m, 100m for offset and 45◦ for azimuth. The
minimum offset was 50m while the maximum was 450m. The total amount of grid points per block
were 26× 26× 5× 8 = 27040 whereas the total amount of traces in the area were such that 40-45%
of the grids were populated. The data were NMO-corrected and low-pass filtered with a cut off fre-
quency of 100Hz prior to the interpolation. The frequencies considered in the algorithm range from
0.1 to 100 Hz, with a sampling rate of 1msec. The running time on a single processor Intel Xeon(R)
running at 3.16 Ghz using MATLAB was of approximately 1h for each block. Figure 1 displays the
shots and receivers that contribute to the black rectangular area, which is the midpoint area used
for the interpolation. We portray a common offset/azimuth gather in Figure 2 for one offset range, a
constant crossline and for az = 22.5◦ and 112.5◦. Furthermore, Figure 3 contains a stack section for a
constant crossline before and after reconstruction. Many of the reflections, specially below 0.4s, are
denoised after the reconstruction and look continuous, in contrast to what was observed before.

Conclusion

In this article we present prestack seismic data reconstruction and denoising as an inverse problem.
The proposed method minimizes the rank of the unfoldings of the tensor in the F −X domain. The
rank-reduction operation is carried out directly on the tensor and not in the Hankel matrices generated
from the data. This formulation does not require any knowledge about the rank needed for the rank
reduction. While we did not display synthetic tests in this article, our experiments showed that this
reconstruction scheme can handle events with curvature, as HOSVD (Kreimer and Sacchi, 2012).
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Figure 1: Survey geometry for the real data example, in true aspect ratio. The red stars are the
sources and the blue triangles are the receivers. The black square shows the midpoint area used in
the reconstruction (comprises all midpoints included in the 21 blocks).

HOVSD and this method are able to reconstruct curved events, unlike Cadzow-based reconstruction
or Fourier-based methods. Our land data example demonstrates the performance of the algorithm in
a real case scenario. ADMM-based reconstruction presents a formal formulation to the rank-reduction
based interpolation problem.

This method does not intend to replace widely used methods in the industry such as MWNI (Liu and
Sacchi, 2004). It merely presents a new research path we have started to follow, where we believe
that seismic data can be handled in its multidimensional form without adopting matrices for their
rank reduction operation. We envision that this sort of approach could lead to other applications in
exploration geophysics in the future.
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Figure 2: Constant offset (250m) and azimuth displayed for a single crossline. (a) 22.5◦ azimuth
before interpolation. (b) 22.5◦ azimuth after interpolation. (c) 112.5◦ azimuth before interpolation. (d)
112.5◦ after azimuth interpolation.
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Figure 3: Stack of all 21 blocks for a constant crossline. (a) Before interpolation. (b) After interpola-
tion.
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