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Introduction 
The goal of this study is to catalogue all the large scale, tectonically-generated sequence boundaries 
which punctuate the Phanerozoic stratigraphy of the North American Arctic and to determine the 
frequency and possible origin of the interpreted tectonic episodes which gave rise to the boundaries. 
This study is feasible because, over the last 40 years, the Phanerozoic succession of the North 
American Arctic, both on the surface and in the subsurface, has been intensely studied in various 
sedimentary basins with modern basin analysis techniques including sedimentology, sequence 
stratigraphy and biostratigraphy.  

Data Sources 
Notably, the entire Phanerozoic succession is present in the NA Arctic although no single basin 
contains a complete column. The data for this study come mainly from three major basins: Franklinian 
Basin, Sverdrup Basin and Beaufort-Mackenzie Basin. Data from other basins in the NA Arctic such as 
the North Slope Basin of Alaska have been used to complement and refine the results obtained from 
the three main basins. 

 

The Franklinian Basin of the Canadian Arctic Islands and adjacent northern Greenland provides an 
excellent record of the Cambrian to Devonian succession from basin margin to basin centre and the 
stratigraphy of the succession is detailed in numerous reports, including Mayr (1978), Thorsteinsson 
and Mayr (1987), Higgins et al. (1991), Trettin et al. (1991), Embry (1991a), Mayr et al (1994), Harrison 
(1995), Mayr et al. (1998), de Freitas et al. (1999), and  Dewing et al. (2008). Relevant sequence 
stratigraphic data on the Cambrian-Devonian succession have also been gleaned from work done on 
the northern Canadian mainland where the strata are widely distributed (Fritz et al., 1992; Pyle and 
Jones, 2009).    

 

Stratigraphic data for the Carboniferous through Cretaceous succession have been obtained primarily 
from the Sverdrup Basin of the Canadian Arctic Archipelago. The succession is very thick (12 km) and 
exquisitely exposed in the eastern part of the basin. In the west, ample well and seismic data 
supplement the surface exposures. The key references for the detailed stratigraphy of this succession 
are Balkwill (1978, 1983), Beauchamp and Henderson (1994), Beauchamp and Thériault (1994), 
Beauchamp (1995), Beauchamp et al. (2001, 2009), Beauchamp and Olchowy (2003), Embry (1991b, 
1993, 1997, 2011) and Embry and Beauchamp (2008).  Data for the Jurassic and Cretaceous 
succession were also acquired from studies in the Mackenzie Delta and adjacent areas (Dixon 1982, 
1991, 1993; Poulton, 1982), offshore west Greenland (Schenk, 2011) and the North Slope Basin of 
Alaska (Houseknecht and Bird, 2004; Decker, 2007; Bird and Houseknecht, 2011).   
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Cenozoic stratigraphic data are most complete for the Beaufort–Mackenzie Basin on the northern 
continental margin. The succession is mainly in the subsurface and has been unraveled through the 
analysis of plentiful well and seismic information. Important references for the Cenozoic stratigraphy 
include Dixon et al (1992), Dixon (1996), Dixon et al. (2008) and Helwig et al (2011). Additional 
stratigraphic data were obtained from the outcropping Paleogene succession of the eastern Sverdrup 
Basin (Ricketts, 1991, 1994; Ricketts and Stephenson, 1994; Harrison et al., 1999).  

Tectonic Episodes 
These detailed and basin-wide stratigraphic studies in the various basins have revealed the presence 
of 56, large magnitude, sequence boundaries within the Phanerozoic succession of Arctic North 
America. These boundaries are distinguished by the presence of the following characteristics: 

1) A widespread, often angular, unconformity on the basin margins and positive elements 
2) A major change in depositional regime  
3) A notable change in tectonic regime and subsidence pattern  
4) A change in source region for siliciclastic sediments 
5) A major back step of the carbonate platform edge for carbonate sediments 
6) A widespread transgression with significant deepening directly following the boundary  

 

The sequence boundary characteristics strongly indicate that the boundaries identified were generated 
primarily by tectonics and not by eustasy (Embry, 1990). Thus, each sequence boundary is interpreted 
to be generated by a tectonic episode which affected the entire region and which resulted in tectonic 
uplift and erosion on the margins of the basins. This uplift was accompanied by notable regression in 
the more central areas of the basins and was followed by a collapse and marine flooding of the basin 
margins and beyond. The sequence boundaries, which punctuate the Phanerozoic stratigraphy of the 
NA Arctic, occurred on average about every 10 million years (56 boundaries in 545 million years).  

 

The maximum regressive surface portion of each sequence boundary has been dated on the basis of 
the available biostratigraphy which, in most cases, allows the boundary to be assigned to a specific 
biozone. The sequence boundaries were then assigned a numerical age through the correlation of the 
biozones with the 2012 geological time scale (Gradstein et al., 2012). The time intervals between the 
boundaries were no less than 5 and no more than 15 million years in almost all cases. It is clear that 
the tectonically generated boundaries were not strictly periodic but were chaotic and had a relatively 
high chance of reoccurring within 10 million years. Furthermore, there is no systematic change in 
boundary frequency throughout the entire Phanerozoic and an average frequency of about 10 million 
years occurs for any given 100 million year interval. Thus, the major transgression which follows each 
boundary could perhaps be referred to as a “10 million year flood”. 

 

A given tectonic episode began with the initial uplift of the basin margin (start of base level fall) and 
ended with the collapse and marine flooding of the margin (maximum flooding surface). The sequence 
boundary was generated during the tectonic episode and represents the time of maximum uplift and 
basinward extent of the unconformity. It is estimated that the duration of each of the tectonic episodes 
was in the range of a few million years and was significantly shorter than the intervening times of 
tectonic quiescence.  

Origin of Tectonic Episodes 
The recognition of these tectonic episodes leads to questions such as “what is the primary cause of 
such repetitive episodes?” and “are they global in extent or just a characteristic of the North American 
Arctic?” It is postulated that such tectonic episodes are an expression of relatively rapid and substantial 
changes in the horizontal and vertical stress fields of the NA Arctic. Such stress changes would be 
possibly due to somewhat abrupt changes in the speed and/or direction of plate movements which 
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affected the NA Arctic. Given there is a complex feedback between plate distribution and dynamics with 
mantle convection and heat release (Rolf et al., 2012), the recognized tectonic episodes would 
presumably reflect perturbations in mantle convection intermittently occurring every 5 -15 million years 
due to a gradual buildup and consequent, episodic release of stress and heat.   

 

In terms of the possible global extent of the recognized events, it is worth noting that all of the 18 major, 
tectonic, sequence boundaries recognized by Sloss (1988) for the Phanerozoic of the North American 
continent are present in our compilation for the Arctic. Furthermore, a cursory literature survey has 
indicated most of the tectonic sequence boundaries we have recognized are present in basins on 
different continents. However, in many cases, the published data are not sufficient to document a 
tectonic origin for a given boundary in a given basin. A more detailed literature search for the Triassic 
(Embry, 1997) has revealed that all the Triassic, tectonically-generated sequence boundaries 
recognized in the NA Arctic are present in numerous basins in North America,  Europe and Asia and 
were also tectonically generated in those areas. 

 

It has also been determined that 16 of the18 Cambrian-Pliocene mass extinctions identified by 
Bambach (2006) coincide with an identified tectonic episode and that many of the tectonic episodes 
correlate with significant carbon isotope excursions (Saltzman and Thomas, 2012). Such correlations 
would imply that the episodes were the expression of a global phenomenon rather than one confined to 
the NA Arctic.  Thus, it is quite possible that most, if not all, of the recognized, tectonically-generated, 
sequence boundaries of the NA Arctic represent episodic tectonics which occurred on a global scale. 
Given that all the tectonic plates are linked and a mantle-driven, major adjustment in the speed or 
direction of one plate would require compensatory movement changes in all the other plates, a 
phenomenon of episodic global tectonics occurring with a frequency of 5 -15 million years is a 
theoretical possibility. 

Implications for Petroleum Exploration 
These results have implications for petroleum exploration in that petroleum traps would have been 
formed, altered and sometimes breeched during the tectonic episodes. Also, the movement of 
subsurface fluids would have been greatly influenced by such intermittent convulsions of the 
sedimentary column. Finally the recognition and dating of these tectonically-generated sequence 
boundaries in combination with their potential global distribution allows their occurrence to be predicted 
in unexplored sedimentary basins. 
 

Conclusions 
Fifty-six, large magnitude sequence boundaries have been delineated in the Phanerozoic succession of 
Arctic North America. The characteristics of the boundaries indicate that they were primarily generated 
by tectonics. The boundaries occur with an approximate 10 million year frequency (9.8 +/- 3.1).  Each 
boundary was generated during a tectonic episode interpreted to reflect a mantle-driven, plate tectonic 
reorganization and consequent changes in regional stress fields. Such episodes likely lasted for a few 
million years and were separated by longer intervals of relative tectonic quiescence. There are 
indications that the recognized tectonic episodes affected basins throughout the world.   
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